Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks

Sasaki, Miyuki; Sanada, Yukihisa; Katengeza, E. W.*; Yamamoto, Akio*

Scientific Reports (Internet), 11, p.1857_1 - 1857_11, 2021/01

 Times Cited Count:0 Percentile:100(Multidisciplinary Sciences)

This study proposed a new method to visualize the ambient dose rate distribution using artificial neural networks from the results of airborne radiation monitoring. The method used airborne radiation monitoring conducted around Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. A lot of survey data which had obtained in the past was used as training data for building a network. The reliability of the artificial neural network method was evaluated by comparison with the ground-based survey data. The dose rate map that was created by the artificial neural networks method reproduced the ground-based survey results better than traditional methods.

Journal Articles

Data analysis based upon abduction; For better understanding the result discussion in computational science and engineering

Nakajima, Norihiro

Nippon Genshiryoku Gakkai-Shi, 59(8), p.34 - 38, 2017/08

It is necessary the reading comprehension of output data to utilize the simulation in a design process, besides of the input data preparation. The simulation introduces enormous big data for evaluation. This paper describes data analysis technology in the analysis and the evaluation process of the output. The technology applies the artificial intelligence to minimize the unpredictable issues and oversight. It is based on the artifact engineering, which is a multi-sight abduction methodology, which derives a hypothesis.

Journal Articles

Design and implementation of an evolutional data collecting system for the atomic and molecular databases

Sasaki, Akira; Jo, Kazuki*; Kashiwagi, Hiroe*; Watanabe, Chiemi*; Suzuki, Manabu*; Lucas, P.*; Oishi, Masatoshi*; Kato, Daiji*; Kato, Masatoshi*; Kato, Takako*

Journal of Plasma and Fusion Research SERIES, Vol.7, p.348 - 351, 2006/00

no abstracts in English

Journal Articles

A Framework of distributed computing for monitoring systems; Integration of TTY-based programs and object-oriented programming

Suzudo, Tomoaki; Nabeshima, Kunihiko; Takizawa, Hiroshi*

Nippon Genshiryoku Gakkai Wabun Rombunshi, 2(4), p.500 - 509, 2003/12

A new methodology to construct distributed computing systems specially targeting nuclear power plant monitoring systems is proposed. In this framework, a monitoring system is composed of multiple modules and a client that administrates them. Each module is designed as a TTY-based program, and therefore has a great flexibility when it is developed. The client holds virtual modules, each of which works as an interface to a module in the remote hosts. Because the virtual modules are defined as a class in the meaning of object-oriented programming, the whole system is easily structured. A prototype of neural-network-based monitoring system has been developed utilizing this methodology, and the expected advantages have been confirmed.

Journal Articles

Application of multivariables analysis method to prediction of material behaviors

Tsuji, Hirokazu; Fujii, Hidetoshi*

Tahenryo Kaiseki Jitsurei Handobukku, p.107 - 114, 2002/00

no abstracts in English

JAEA Reports

A Study of reactor monitoring method with neural network

Nabeshima, Kunihiko

JAERI 1342, 119 Pages, 2001/03

JAERI-1342.pdf:7.52MB

no abstracts in English

Journal Articles

Nuclear power plant monitoring with recurrent neural network

Nabeshima, Kunihiko; Inoue, K.*; Kudo, Kazuhiko*; Suzuki, Katsuo*

International Journal of Knowledge; Based Intelligent Engineering Systems, 4(4), p.208 - 212, 2000/10

no abstracts in English

JAEA Reports

None

*

JNC-TJ7400 2000-015, 203 Pages, 2000/08

JNC-TJ7400-2000-015.pdf:6.07MB

no abstracts in English

Journal Articles

Plant monitoring with the combination of recurrent neural network and real-time expert system

Nabeshima, Kunihiko; Suzudo, Tomoaki; Takizawa, Hiroshi*; Ono, Tomio*; Kudo, Kazuhiko*

Proceedings of International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human-Machine Interface Technologies (NPIC&HMIT 2000) (CD-ROM), 9 Pages, 2000/00

no abstracts in English

Journal Articles

Early fault detection for nuclear power plant using recurrent neural network

Nabeshima, Kunihiko; Inoue, K.*; Suzuki, Katsuo; *

Proc. of 5th Int. Conf. on Neural Information Processing (ICONIP'98), 2, p.1102 - 1105, 1998/00

no abstracts in English

Journal Articles

Sensor algorithms of the plasma vertical position to avoid a vertical displacement event during plasma-current quench on JT-60U

Yoshino, Ryuji; Koga, J. K.*;

Fusion Technology, 30(2), p.237 - 250, 1996/11

no abstracts in English

JAEA Reports

A Study of reactor diagnosis method with neural network using PWR plant simulator

Nabeshima, Kunihiko; Nose, Shoichi*; *; Suzuki, Katsuo

JAERI-Research 96-051, 46 Pages, 1996/10

JAERI-Research-96-051.pdf:1.51MB

no abstracts in English

Journal Articles

Reconstruction of plasma current profile of tokamaks using combinatorial optimization techniques

Kishimoto, Maki; ; Ara, Katsuyuki; Fujita, Takaaki; *

IEEE Transactions on Plasma Science, 24(2), p.528 - 538, 1996/04

 Times Cited Count:1 Percentile:95.37(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Solution of electromagnetic inverse problem using combinational method of hopfield neural network and genetic algorithm

Kishimoto, Maki; ; Ara, Katsuyuki

Journal of Applied Physics, 79(1), p.1 - 7, 1996/01

 Times Cited Count:9 Percentile:53.2(Physics, Applied)

no abstracts in English

JAEA Reports

Nuclear power plant monitoring method by neural network and its application to actual nuclear reactor

Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni*; E.Tuerkcan*

JAERI-Research 95-076, 33 Pages, 1995/11

JAERI-Research-95-076.pdf:1.03MB

no abstracts in English

JAEA Reports

Implementation of an MRACnn System on an FBR Building Block Type Simulator

Ugolini; Yoshikawa, Shinji; Ozawa, kenji

PNC-TN9410 95-253, 13 Pages, 1995/10

PNC-TN9410-95-253.pdf:0.5MB

This report presents the implementation of the a model reference adaptive control system based on the artificial neural network technique (MRAC$$_{nn}$$) in a fast breeder reactor (FBR) building block type (BBT) simulator representing the Monju prototype reactor. The purpose of this report is to improve the control of the outlet steam temperature of the three evaporators of the Monju prototype reactor. The connection between the MRAC$$_{nn}$$ system and the BBT simulator is achieved through an external shared memory accessible by both systems. The MRAC$$_{nn}$$ system calculates the demand for the position of the feedwater valve replacing the signal of a PID controller collocated inside the heat transport system model of the Monju prototype reactor. Two series of simulation tests havc been performed, one with one loop connected to the MRAC$$_{nn}$$ system (leaving the remaining two connected to the original PID controller), and the other with three loops connected to the MRAC$$_{nn}$$ system. In both simulation tests the MRAC$$_{nn}$$ system performed better than the PID controller, keeping the outlet steam temperature of the evaporators closer to the required set point value through all the transients.

Journal Articles

Reactor diagnosis with adaptively trained neural network

Nabeshima, Kunihiko

Tokei Suri Kenkyujo Kyodo Kenkyu Ripoto 68, 0, p.43 - 52, 1995/03

no abstracts in English

Journal Articles

Studies on the detection of incipient coolant boiling in nuclear reactors using artificial neural networks

R.Kozma*; Nabeshima, Kunihiko

Annals of Nuclear Energy, 22(7), p.483 - 496, 1995/00

 Times Cited Count:10 Percentile:29.33(Nuclear Science & Technology)

no abstracts in English

Journal Articles

On-line nuclear power plant monitoring with neural network

Nabeshima, Kunihiko; Suzuki, Katsuo; E.Tuerkcan*; Oe.Ciftcioglu*

The 3rd JSME/ASME Joint Int. Conf. on Nuclear Engineering, Vol. 3, 0, p.1551 - 1556, 1995/00

no abstracts in English

27 (Records 1-20 displayed on this page)