Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 2686

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, T. D.; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

 Times Cited Count:0

Journal Articles

Multi-step magnetic transitions in EuNiIn$$_4$$

Ikeda, Shugo*; Kaneko, Koji; Tanaka, Yuki*; Kawasaki, Takuro; Hanashima, Takayasu*; Munakata, Koji*; Nakao, Akiko*; Kiyanagi, Ryoji; Ohara, Takashi; Mochizuki, Kensei*; et al.

Journal of the Physical Society of Japan, 89(1), p.014707_1 - 014707_7, 2020/01

 Times Cited Count:0

Journal Articles

On-site measurement of nuclear material by using the fast neutron direct interrogation method

Komeda, Masao

Bunseki, 2019(10), p.459 - 461, 2019/10

no abstracts in English

Journal Articles

Development of spin-contrast-variation neutron reflectometry for the structural analysis of multilayer films

Kumada, Takayuki; Akutsu, Kazuhiro*; Oishi, Kazuki*; Morikawa, Toshiaki*; Kawamura, Yukihiko*; Sahara, Masae*; Suzuki, Junichi*; Torikai, Naoya*

Journal of Applied Crystallography, 52(5), p.1054 - 1060, 2019/10

 Times Cited Count:0

We developed a technique of spin-contrast-variation neutron reflectometry (SCV-NR). Polarized-neutron reflectivity curves of film samples vary as a function of their proton-polarization P. The P-dependent reflectivity curves of a polystyrene film was precisely reproduced using a common set of structure parameters and the P-dependent neutron scattering length. The reflectivity curve of poly (styrene-block-isoprene) (PSPI) presented a shoulder attributed to holes with the depth corresponding to one period of periodic lamellae on the free surface only at a specific P. In this way, structural information about specific surfaces or interfaces can be obtained by controlling the P.

Journal Articles

The Effect of rehydration on bond strength of reinforced concrete subjected to high temperature

Miyabe, Azusa*; Koyama, Taku*; Nishio, Yuhei*; Suzuki, Hiroshi; Kanematsu, Manabu*

Konkurito Kozobutsu No Hoshu, Hokyo, Appuguredo Rombun Hokokushu (CD-ROM), 19, p.59 - 64, 2019/10

no abstracts in English

Journal Articles

Structural change of borosilicate glass by neutron irradiation

Nagai, Takayuki; Kobayashi, Hidekazu; Okamoto, Yoshihiro; Akiyama, Daisuke*; Sato, Nobuaki*; Uehara, Akihiro*; Fujii, Toshiyuki*; Sekimoto, Shun*

KURNS Progress Report 2018, P. 105, 2019/08

To understand this structural change of a borosilicate glass by a neutron irradiation in detail, the irradiation test was carried out in KUR in 2017FY. The glass structure was estimated by using Raman spectrometry in 2018FY. Comparing with the Raman spectra of glass samples before and after irradiation, it could be observed the change of peak height of Si-O bridging structure by the irradiation.

Journal Articles

Hexagonal close-packed iron hydride behind the conventional phase diagram

Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Scientific Reports (Internet), 9(1), p.12290_1 - 12290_9, 2019/08

 Times Cited Count:0 Percentile:100(Multidisciplinary Sciences)

Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature ($$T$$) and pressure ($$P$$) conditions, including those corresponding to the Earth's inner core. ${{it In situ}}$ X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeH$$_{x}$$ compositions when $$x < 0.6$$. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5) $AA $^{3}$$/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in $$x$$ with $$T$$, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive $$x$$-$$T$$-$$P$$ region.

Journal Articles

Impact of irradiation side on neutron-induced single-event upsets in 65-nm Bulk SRAMs

Abe, Shinichiro; Liao, W.*; Manabe, Seiya*; Sato, Tatsuhiko; Hashimoto, Masanori*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 66(7, Part2), p.1374 - 1380, 2019/07

 Times Cited Count:0 Percentile:100(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by secondary cosmic-ray neutrons have recognized as a serious reliability problem for microelectronic devices. Acceleration tests at neutron facilities are convenient to validate soft error rates (SERs) quickly, but some corrections caused from measurement conditions are required to derive realistic SERs at actual environment or to compare other measured data. In this study, the effect of irradiation side on neutron-induced SEU cross sections was investigated by performing neutron transport simulation using PHITS. SERs for 65-nm bulk CMOS SRAMs are estimated using the sensitive volume model. It was found from simulation that SERs for the sealant side irradiation are 30-50% larger than those for the board side irradiation. This difference comes from the difference of production yield and angular distribution of secondary H and He ions, which are the main cause of SEUs. Thus the direction of neutron irradiation should be reported when the result of acceleration tests are published. This result also indicates that SERs can be reduced by equipping device with sealant side facing downward.

Journal Articles

Proton chelating ligands drive improved chemical separations for rhodium

Narita, Hirokazu*; Nicolson, R. M.*; Motokawa, Ryuhei; Ito, Fumiyuki*; Morisaku, Kazuko*; Goto, Midori*; Tanaka, Mikiya*; Heller, W. T.*; Shiwaku, Hideaki; Yaita, Tsuyoshi; et al.

Inorganic Chemistry, 58(13), p.8720 - 8734, 2019/07

 Times Cited Count:0 Percentile:100(Chemistry, Inorganic & Nuclear)

Journal Articles

Study on B$$_{4}$$C decoupler with burn-up reduction aiming at 1-MW pulsed neutron source

Oi, Motoki; Teshigawara, Makoto; Harada, Masahide; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 56(7), p.573 - 579, 2019/07

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

In pulsed neutron sources, a neutron absorber called decoupler is attached to the moderator to sharpen the neutron pulses for achieving good neutron energy resolutions. Cadmium and boron carbide (B$$_{4}$$C) are widely used as the decoupler materials. However, it is difficult to use B$$_{4}$$C in MW-class spallation neutron sources owing to high burn-up, which decreases cut-off energy and increase of helium gas swelling. To solve these issues, we introduce the concept of pre-decoupler to reduce neutron absorption in the B$$_{4}$$C decoupler, which is sandwiched by appropriate neutron absorption materials. Then, we study impacts of the pre-decouplers on B$$_{4}$$C decoupler in terms of burn-up by performing simplified model calculations. It is shown that neutron absorption in B$$_{4}$$C is reduced by 60% by using a Cd pre-decoupler without neutron intensity penalty. Moreover, helium gas swelling in B$$_{4}$$C is restrained to be one-third of the value when not using the pre-decoupler.

Journal Articles

Performance of large volume LaBr$$_{3}$$ scintillation detector equipped with specially-designed shield for neutron resonance capture analysis

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Harada, Hideo

Nuclear Instruments and Methods in Physics Research A, 932, p.16 - 26, 2019/07

 Times Cited Count:0 Percentile:100(Instruments & Instrumentation)

Journal Articles

Background issues encountered by cold-neutron chopper spectrometer AMATERAS

Kikuchi, Tatsuya*; Nakajima, Kenji; Kawamura, Seiko; Inamura, Yasuhiro; Nakamura, Mitsutaka; Wakai, Daisuke*; Aoyama, Kazuhiro*; Iwahashi, Takaaki*; Kambara, Wataru*

Physica B; Condensed Matter, 564, p.45 - 53, 2019/07

 Times Cited Count:0 Percentile:100(Physics, Condensed Matter)

Details of the background, that is, unwanted signals accumulated by the data acquisition system of neutron instruments, observed by the cold-neutron chopper spectrometer AMATERAS installed at the Materials and Life Science Experimental Facility at J-PARC are reported. In the design phase of AMATERAS, we carefully considered the achievement of high signal-to-noise ratio, and possible countermeasures were implemented. Actually, recent scientific outputs from AMATERAS indicates that the spectrometer is one of excellent neutron instruments with low background. In spite of that, in nine years of AMATERAS operation, we have encountered unwanted signals due to various reasons, including gamma-rays emitted at materials on or near the beam line including the sample itself, scattered neutrons from the beam line devices, air scattering, electronic noise in data acquisition system, cosmic rays, T0 burst, and other unknown sources. In this report, we discuss the background observed by AMATERAS, especially in the conditions of without samples, comprehensively. The possible sources of these signals and the countermeasures considered against the above sources are discussed, which may be helpful to those who are engaged in other existing or planned neutron-scattering instruments.

Journal Articles

High-pressure structure and electronic properties of YbD$$_{2}$$ to 34 GPa

Klotz, S.*; Casula, M.*; Komatsu, Kazuki*; Machida, Shinichi*; Hattori, Takanori

Physical Review B, 100(2), p.020101_1 - 020101_5, 2019/07

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

Ytterbium dihydride (YbH$$_{2}$$) shows a well-known transition at $$approx$$16 GPa from a CaH$$_{2}$$-type structure to a high-pressure (high-$$P$$) phase with Yb at hcp sites and unknown H-positions. Here, we report its complete structure determination by neutron diffraction at 34 GPa. Hydrogen(deuterium) is located at 2$$a$$ and 2$$d$$ positions of space group $$P6_{3}/mmc$$, thus forming a high-symmetry "collapsed" close-packed lattice. The transition is sluggish and can be seen as a transfer of 1/2 of the hydrogen atoms from strongly corrugated H-layers to interstitial sites of the Yb-lattice. We demonstrate by first-principles calculations that the transition is related to a change from a completely filled $$f$$-electron configuration to a fractional $$f$$-hole ($$approx$$0.25 h) occupation in the high-$$P$$ phase. The $$f$$ $$to$$ $$d$$ charge transfer closes the gap at the transition and leads to a metallic ground state with sizeable electron-phonon interaction involving out-of-plane vibrational modes of interstitial hydrogen.

Journal Articles

Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press

Hattori, Takanori; Sano, Asami; Machida, Shinichi*; Abe, Jun*; Funakoshi, Kenichi*; Arima, Hiroshi*; Okazaki, Nobuo*

High Pressure Research, 39(3), p.417 - 425, 2019/06

 Times Cited Count:3 Percentile:8.8(Physics, Multidisciplinary)

We have developed a technique for neutron diffraction experiments at pressures up to 40 GPa using a Paris-Edinburgh press at the PLANET beamline in J-PARC. To increase the maximum accessible pressure, the diameter of the dimple for sample chamber at the top of the sintered diamond anvils is sequentially reduced from 4.0 mm to 1.0 mm. As a result, the maximum pressure increased and finally reached 40 GPa. By combining this technique with the beam optics which defines the gauge volume, diffraction patterns sufficient for full-structure refinements are obtainable at such pressures.

Journal Articles

Anomalous structure of liquid Bi studied by coherent QENS and time-space correlation analysis

Kawakita, Yukinobu; Kikuchi, Tatsuya*

Hamon, 29(2), p.91 - 94, 2019/05

Bismuth (Bi) has a double-layered structure based on Peierls distortion in crystalline phase. Complicated static structure in liquid phase which cannot be interpreted by a simple packing model has been conjectured that Peierls distortion may remain even in liquid phase. We measured quasi-elastic neutron scattering (QENS) of liquid Bi by using AMATERAS installed at BL14 beamport of Materials and Life Science Experimental Facility (MLF) in J-PARC and analyzed coherent QENS spectra. A time-space correlation function revealed that the nearest neighboring shell followed by a shoulder-like structure at longer side consists of four contributions of short and long correlations with relatively long relaxation time of a few tens pico second and medium-ranged and the longest correlations with a short relaxation time of sub-pico second, which is a direct observation of the existing layered structure in liquid Bi. In this article, we report the above scientific results and the method to analyze coherent QENS by the time-space correlation function.

Journal Articles

Triplon band splitting and topologically protected edge states in the dimerized antiferromagnet

Nawa, Kazuhiro*; Tanaka, Kimihito*; Kurita, Nubuyuki*; Sato, Taku*; Sugiyama, Haruki*; Uekusa, Hidehiro*; Kawamura, Seiko; Nakajima, Kenji; Tanaka, Hidekazu*

Nature Communications (Internet), 10, p.2096_1 - 2096_8, 2019/05

 Times Cited Count:0 Percentile:100(Multidisciplinary Sciences)

Search for topological materials has been actively promoted in the field of condensed matter physics for their potential application in energy-efficient information transmission and processing. Recent studies have revealed that topologically invariant states, such as edge states in topological insulators, can emerge not only in a fermionic electron system but also in a bosonic system, enabling nondissipative propagation of quasiparticles. Here we report the topologically nontrivial triplon bands measured by inelastic neutron scattering on the spin-1/2 two-dimensional dimerized antiferromagnet Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$. The excitation spectrum exhibits two triplon bands that are clearly separated by a band gap due to a small alternation in interdimer exchange interaction, consistent with a refined crystal structure. By analytically modeling the triplon dispersion, we show that Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$ is the first bosonic realization of the coupled Su-Schrieffer-Heeger model, where the presence of topologically protected edge states is prompted by a bipartite nature of the lattice.

Journal Articles

Highlight of recent sample environment at J-PARC MLF

Kawamura, Seiko; Hattori, Takanori; Harjo, S.; Ikeda, Kazutaka*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Watanabe, Masao; Sakaguchi, Yoshifumi*; Oku, Takayuki

Neutron News, 30(1), p.11 - 13, 2019/05

In Japanese neutron scattering facilities, some SE equipment that are frequently used at an instrument, such as the closed-cycle refrigerator (CCR), have been prepared for the instrument as standard SE. They are operated for user experiments by the instrument group. The advantage of this practice is that they can optimize the design of the SE for the instrument and can directly respond to users' requests. On the other hand, the SE team in the Materials and Life Science Experimental Facility (MLF) in J-PARC has managed commonly used SE to allow neutron experiments with more advanced SE. In this report, recent SE in the MLF is introduced. Highlighted are the SE in BL11, BL19, BL21 and BL17 and other SE recently progressed by the SE team.

Journal Articles

Sample shape effect on nuclear material quantification with neutron resonance transmission analysis

Tsuchiya, Harufumi; Ma, F.; Kitatani, Fumito; Paradella, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*

Proceedings of 41st ESARDA Annual Meeting (Internet), p.374 - 377, 2019/05

Journal Articles

5.1.2 Properties and characteristics of radiations

Takahashi, Fumiaki

Genshiryoku No Ima To Ashita, p.106 - 109, 2019/03

The Atomic Energy Society of Japan has planned to publish a document for public, entitled "Current and tomorrow of atomic energy, -Experiences from the accident at the Tokyo Electronic Power Company Fukushima Dai-ichi NPPs-". The documents give us basics and usages of radiations, in addition to nuclear power plants and the accident at TEPCO Fukushima Dai-ichi NPPs. This manuscript explains interactions and penetrations in material for $$alpha$$-rays, $$beta$$-rays, $$gamma$$-rays and neutrons. In addition, exposure characteristics that is determined by properties of radiations are expressed here. This manuscript also explains characteristics in internal exposure and countermeasures of radiation protection following the TEPCO accident for Iodine-131 and Cesium-137.

Journal Articles

Colossal barocaloric effects in plastic crystals

Li, B.*; Kawakita, Yukinobu; Kawamura, Seiko; Sugahara, Takeshi*; Wang, H.*; Wang, J.*; Chen, Y.*; Kawaguchi, Saori*; Kawaguchi, Shogo*; Ohara, Koji*; et al.

Nature, 567(7749), p.506 - 510, 2019/03

 Times Cited Count:1 Percentile:36.63(Multidisciplinary Sciences)

Refrigeration is of vital importance for modern society for example, for food storage and air conditioning- and 25 to 30% of the world's electricity is consumed for refrigeration. Current refrigeration technology mostly involves the conventional vapour compression cycle, but the materials used in this technology are of growing environmental concern because of their large global warming potential. As a promising alternative, refrigeration technologies based on solid-state caloric effects have been attracting attention in recent decades. However, their application is restricted by the limited performance of current caloric materials, owing to small isothermal entropy changes and large driving magnetic fields. Here we report colossal barocaloric effects (CBCEs) (barocaloric effects are cooling effects of pressure-induced phase transitions) in a class of disordered solids called plastic crystals. The obtained entropy changes in a representative plastic crystal, neopentylglycol, are about 389 joules per kilogram per kelvin near room temperature. Pressure-dependent neutron scattering measurements reveal that CBCEs in plastic crystals can be attributed to the combination of extensive molecular orientational disorder, giant compressibility and highly anharmonic lattice dynamics of these materials. Our study establishes the microscopic mechanism of CBCEs in plastic crystals and paves the way to next-generation solid-state refrigeration technologies.

2686 (Records 1-20 displayed on this page)