Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Critical power correlation for axially uniformly heated tight-lattice bundles

Kureta, Masatoshi; Akimoto, Hajime

Nuclear Technology, 143(1), p.89 - 100, 2003/07

 Times Cited Count:10 Percentile:40.17(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Critical power in axially uniformly-heated tight-lattice rod bundles

Kureta, Masatoshi; Akimoto, Hajime

Nippon Kikai Gakkai Rombunshu, B, 69(682), p.1469 - 1476, 2003/06

no abstracts in English

JAEA Reports

Summary of the 5th Workshop on the Reduced Moderation Water Reactor; March 8, 2002, JAERI, Toaki

Nakano, Yoshihiro; Ishikawa, Nobuyuki; Nakatsuka, Toru; Iwamura, Takamichi

JAERI-Conf 2002-012, 219 Pages, 2002/12

JAERI-Conf-2002-012.pdf:17.4MB

no abstracts in English

Journal Articles

Critical heat flux experiments in tight lattice core

Kureta, Masatoshi

JAERI-Conf 2002-012, p.47 - 52, 2002/12

no abstracts in English

Journal Articles

Design of small Reduced-Moderation Water Reactor (RMWR) with natural circulation cooling

Okubo, Tsutomu; Suzuki, Motoe; Iwamura, Takamichi; Takeda, Renzo*; Moriya, Kumiaki*; Kanno, Minoru*

Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 10 Pages, 2002/10

A small scale around 300 MWe reduced-moderation water reactor (RMWR) concept has been developed. For the core, a BWR type core concept with the tight-lattice fuel rod arrangement and the high void fraction is adopted to attain a high conversion ratio over 1.0. The negative void reactivity coefficients are also required, and the very flat short core concept is adopted to make the natural circulation cooling (NC) possible. The core burn-up of 60 GWd/t and the operation cycle of 24 months are also attained. For the system, simplification of the system with the passive safety features is a basic approach to overcome the scale demerit as well as the NC. For example, the HPCF system is replaced with the passive accumulator system resulting in the expensive emergency DGs reduction. The cost evaluation for concerned NSSS components gives about 20% reduction. Since MOX fuels in the RMWR contains Pu around 30 wt% and is irradiated to a high burn-up, the fuel safety evaluation has been performed and the acceptable results have been obtained from the thermal feasibility point of view.

Journal Articles

Design study on Reduced-Moderation Water Reactor (RMWR)

Okubo, Tsutomu; Iwamura, Takamichi; Yamamoto, Kazuhiko*; Okada, Hiroyuki*

Nippon Kikai Gakkai Dai-8-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, p.571 - 574, 2002/00

Based on the experienced light water reactor technology, conceptual design studies on advanced water-cooled reactors have been performed. They are named “Reduced-Moderation Water Reactor" (RMWR) with the high conversion ratio more than 1.0 and the negative void reactivity coefficients. Several concepts have been successfully established for them based on the neutronics calculations. Based on these concepts, detailed investigations on such as plutonium multiple recycling and control rod planning have been performed as well as improvement on core performances. Through these detailed core design investigation, the feasibility of those designs has been confirmed step by step.

Journal Articles

Critical heat flux experiment for Reduced-Moderation Water Reactor (RMWR)

Kureta, Masatoshi; Akimoto, Hajime; Yamamoto, Kazuhiko*; Okada, Hiroyuki*

Proceedings of International Congress on Advanced Nuclear Power Plants (ICAPP) (CD-ROM), 7 Pages, 2002/00

no abstracts in English

Journal Articles

Core and system design of Reduced-Moderation Water Reactor with passive safety features

Iwamura, Takamichi; Okubo, Tsutomu; Yonomoto, Taisuke; Takeda, Renzo*; Moriya, Kumiaki*; Kanno, Minoru*

Proceedings of International Congress on Advanced Nuclear Power Plants (ICAPP) (CD-ROM), 8 Pages, 2002/00

Research and developments of reduced-moderation water reactor (RMWR) have been performed. The RMWR can attain the favorable characteristics such as high burn-up, long operation cycle, multiple recycling of plutonium and effective utilization of uranium resources, based on the matured LWR technologies. MOX fuel assemblies in the tight-lattice fuel rod arrangement are used to reduce the moderation of neutron, and hence, to increase the conversion ratio. The conceptual design has been accomplished for the small 330MWe RMWR core with the discharge burn-up of 60GWd/t and the operation cycle of 24 months, under the natural circulation cooling of the core. A breeding ratio of 1.01 and the negative void reactivity coefficient are simultaneously realized in the design. In the plant system design, the passive safety features are intended to be utilized mainly to improve the economy. At present, a hybrid one under the combination of the passive and the active components, and a fully passive one are proposed. The former has been evaluated to reduce the cost for the reactor components.

Journal Articles

Conceptual designing of reduced-moderation water reactor with heavy water coolant

Hibi, Koki*; Shimada, Shoichiro*; Okubo, Tsutomu; Iwamura, Takamichi; Wada, Shigeyuki*

Nuclear Engineering and Design, 210(1-3), p.9 - 19, 2001/12

 Times Cited Count:22 Percentile:15.84

no abstracts in English

JAEA Reports

Study on safety and core improvement of Reduced-Moderation Water Reactor (RMWR) with high conversion ratio

Okubo, Tsutomu; Takeda, Renzo*; Iwamura, Takamichi

JAERI-Research 2001-021, 84 Pages, 2001/03

JAERI-Research-2001-021.pdf:11.26MB

no abstracts in English

Journal Articles

Activities of design studies on innovative small and medium LWRs in JAERI

Iwamura, Takamichi; Ochiai, Masaaki

Proceedings of 1st Asian Specialist Meeting of Future Small-Sized LWR Development, p.7_1 - 7_9, 2001/00

JAERI has developed two types of small and medium size Light Water Reactors to meet the goals of innovative nuclear reactors such as sustainability and diversification of energy utilization. One is the Reduced-Moderation light Water Reactor (RMWR) with passive safety features. The reactor core consists of MOX fuel assemblies with tight lattice arrangement to increase the conversion ratio by reducing the moderation of neutron energy. The core design of 330MWe output with the operational cycle of 26 months was accomplished. A breeding ratio of 1.01, negative void coefficient and natural circulation cooling of the core were realized under the discharged burn-up of 60GWd/t. The other is the Passive Safe small Reactor for Distributed energy systems (PSRD) to diversify the nuclear energy utilization. An innovative advanced marine reactor (MRX) is used to supply the small grid electricity or electricity and heat co-supply by installing it on a barge. A small integral LWR for underground deployment is also studied for exclusive use of heat supply to household or office.

Journal Articles

Conceptual designing of reduced-moderation water reactor (RMWR)

Okubo, Tsutomu; Iwamura, Takamichi; Akimoto, Hajime; Araya, Fumimasa; Onuki, Akira; Yamamoto, Kazuhiko*

Dai-7-Kai Doryoku Enerugi Gijutsu Shimpojiumu Koen Rombunshu (00-11), p.250 - 253, 2000/11

no abstracts in English

JAEA Reports

Study on reduced-moderation water reactor (RMWR) core design; Joint research report, FY1998-1999 (Joint research)

Research Group for Advanced Reactor System; Research Group for Reactor Physics; Research Group for Thermal and Fluid Engineering

JAERI-Research 2000-035, 316 Pages, 2000/09

JAERI-Research-2000-035.pdf:19.81MB

no abstracts in English

JAEA Reports

A Plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

Shimada, Shoichiro*; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tsutomu; Usui, Shuji*; Shirakawa, Toshihisa*; Iwamura, Takamichi; Kugo, Teruhiko; Ishikawa, Nobuyuki

JAERI-Research 2000-026, 74 Pages, 2000/06

JAERI-Research-2000-026.pdf:4.07MB

no abstracts in English

JAEA Reports

Summary of the 3rd Workshop on the Reduced-Moderation Water Reactor; March 3rd, 2000, JAERI, Tokai

Ishikawa, Nobuyuki; Nakatsuka, Toru; Iwamura, Takamichi

JAERI-Conf 2000-010, 267 Pages, 2000/06

JAERI-Conf-2000-010.pdf:18.03MB

no abstracts in English

JAEA Reports

An Analysis on the roles of reduced-moderation water reactors

Tatematsu, Kenji; Sato, Osamu; Tanaka, Yoji*

JAERI-Research 2000-025, 74 Pages, 2000/05

JAERI-Research-2000-025.pdf:2.4MB

no abstracts in English

JAEA Reports

Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

Yoshida, Hiroyuki; Onuki, Akira; Akimoto, Hajime

JAERI-Tech 2000-024, p.31 - 0, 2000/03

JAERI-Tech-2000-024.pdf:2.06MB

no abstracts in English

Journal Articles

Research and Development of future type LWR in Japan Atomic Energy Research Institute

Iwamura, Takamichi

Genshiryoku eye, 46(1), p.19 - 23, 2000/00

no abstracts in English

Journal Articles

Critical heat flux for tight-lattice rod bundle

Okubo, Tsutomu; Araya, Fumimasa

Proceedings of International Workshop on Current Status and Future Directions in Boiling Heat Transfer and Two-Phase Flow, p.177 - 181, 2000/00

no abstracts in English

19 (Records 1-19 displayed on this page)
  • 1