検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 4 件中 1件目~4件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

東海再処理施設周辺の環境放射線モニタリング結果(1999年度業務報告)

片桐 裕実; 篠原 邦彦; not registered; 清水 武彦; 今泉 謙二; 竹安 正則; 中野 政尚

JNC-TN8440 2000-007, 141 Pages, 2000/06

JNC-TN8440-2000-007.pdf:3.02MB

東海事業所では、「核燃料サイクル開発機構東海事業所再処理施設保安規定、第IV編 環境監視」に基づき、再処理施設周辺の環境放射線モニタリングを実施している。本報告書は、1999年4月から2000年3月までに間に実施した環境モニタリングの結果及び大気、海洋への放射性物質の放出に起因する周辺公衆の線量当量算出結果を取りまとめたものである。また、環境監視計画の概要、測定方法の概要、測定結果及びその経時変化、気象統計結果、放射性廃棄物の放出状況の内訳等については付録として収録した。

報告書

安全管理 業務報告(平成7年度第2四半期)

石黒 秀治

PNC-TN8440 95-042, 113 Pages, 1995/09

PNC-TN8440-95-042.pdf:2.98MB

平成7年度第2四半期(平成7年7月$$sim$$平成7年9月)に実施した業務概要について報告する。記載項目は,安全管理業務概要,安全管理一般,放射線管理,環境安全,個人被ばく管理,小集団活動の推進,研究開発,外部発表等について,取りまとめたものである。

報告書

遮蔽安全解析コードの検証研究

not registered

PNC-TJ1600 94-002, 61 Pages, 1994/02

PNC-TJ1600-94-002.pdf:1.81MB

核燃料施設からの直接およびスカイシャイン線による線量評価は、施設の環境評価項目の1つに位置づけられており、遮蔽計算コードにより解析が行われているが、ベンチマークデータが極めて少ないことなどもあり、評価に置いては十分な安全裕度が見込まれている。このため、合理的な評価を行うためには、スカイシャイン線に係わる実測データの取得が不可欠である。本研究は、施設からのスカイシャイン線のベンチマークデータの取得および各種計算コードの検証を目的として実施するものである。今年度は、スカイシャイン線の実データに関する文献調査、スカイシャイン線の測定手法の検討および汎用ユーザーズ版EGS4のスカイシャイン線評価への適用検討として、以下の検討を行った。・米国カンサス州立大学所有の遮蔽実験用野外実験場で行われたCo-60線源を用いた実験について調査した。・パルス状放射線源を用いた手法について調査し、スカイシャイン線ベンチマークデータ取得のために有効であることを確認した。・EGS4により高エネルギー電子線による制動放射線および消滅$$gamma$$線の発生についてシミュレーション解析を行い、パルス状放射線源を用いたスカイシャインベンチマーク実験へのEGS4の適用性を検討した。

報告書

捨石堆積場周辺のラドン濃度に関する研究(2)

not registered

PNC-TJ1615 91-002, 14 Pages, 1991/03

PNC-TJ1615-91-002.pdf:1.89MB

1990年のICRPの新勧告にも書かれているように、ウラン鉱山に関係する諸施設から直接又は間接的に排出されるラドンに対する適切な対応が求められている。ウラン鉱石からウランをとり出した残りの廃さい中にはもともと存在したウランに見合うラジウムが含まれているうえ、ウラン抽出時に物理的・科学的な処理が加えられているため、細表面積が大きくラドンが発生し易い。そのため廃さいの処理が最も問題にされている。通常これらは地中に埋められているが、浅い位置に埋めた場合には、ラドンが地表に達するまでの間に充分減衰せず大気中に解放されることもある。土壌中のラドンの伝播は簡単な拡散モデルで表すことができる。それによると、土壌中のラドン濃度は地表に向かって指数関数的に減少し、地表に向っての移動距離を$$chi$$とするとexp(-√$$lambda$$/D・$$chi$$)の形になる。ここで$$lambda$$はラドンの壊変定数、Dは見かけの拡散係数である。以前人形峠での実測データにもとずき拡散係数Dは密に踏み固めた粘質性の土壌の場合、2.4$$times$$10-3cm2/S、で機械的に圧延された通常の土壌の場合、6.0$$times$$10-3cm2/S、と推定した。$$lambda$$は、2.098$$times$$10-6S-1なので厚さ2mの場合、前者ならば2.70$$times$$10-3、後者ならば2.38$$times$$10-2、また3mではそれぞれ1.41$$times$$10-4、3.66$$times$$10-3までラドンの土壌中の濃度を減少せしめることになる。通常埋める土壌の厚さを3m以上にするとされているが、土壌の質や工事の方法によって著るしい差があることがわかる。このことより地表面から解放されるラドンの量は一様ではなく局地的にかなりの差があるばかりでなく経年的にも変化することが予想される。地表からのラドンの解放量は土壌表面のラドン濃度傾度と拡散係数の積となるのでD$$times$$d/d$$chi$$(exp(-√$$lambda$$/D・$$chi$$))=√$$lambda$$・D・exp(-√$$lambda$$/D$$chi$$d)$$chi$$=$$chi$$dに比例することになる。ここで、$$chi$$dは埋めた土壌の厚さである。従って地表面からのラドン解放量は拡散係数Dによって大きく変ることが予想される。例えば前記の2mの場合はDの大少によって$$sim$$14倍、3mの場合は$$sim$$41倍の差となる。

4 件中 1件目~4件目を表示
  • 1