Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 78

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of the Unified Cross-section Set ADJ2017

Yokoyama, Kenji; Sugino, Kazuteru; Ishikawa, Makoto; Maruyama, Shuhei; Nagaya, Yasunobu; Numata, Kazuyuki*; Jin, Tomoyuki*

JAEA-Research 2018-011, 556 Pages, 2019/03

JAEA-Research-2018-011.pdf:19.53MB
JAEA-Research-2018-011-appendix1(DVD-ROM).zip:433.07MB
JAEA-Research-2018-011-appendix2(DVD-ROM).zip:580.12MB
JAEA-Research-2018-011-appendix3(DVD-ROM).zip:9.17MB

We have developed a new unified cross-section set ADJ2017, which is an improved version of the unified cross-section set ADJ2010 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses, which are stored in the standard database for FBR core design via the cross-section adjustment methodology, which integrates with the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. The ADJ2017 is based on Japan's latest nuclear data library JENDL-4.0 as in the previous version of ADJ2010, and it incorporates more information on integral experimental data related to minor actinides (MAs) and degraded plutonium (Pu). In the deveropment of ADJ2010, a total of 643 integral experimental data were analyzed and evaluated, and 488 of integral experimental data were finally selected to be used for the cross-section adjustment. In contrast, we have evaluated a total of 719 anlysis results, and eventually adopted 620 integral experimental data to create ADJ2017. ADJ2017 shows almost the same performance as ADJ2010 for the main neutronic characteristics of conventional sodium-cooled MOX-fuel fast reactors. In addition, for the neutrnic characteristics related to MA and degraded Pu, ADJ2017 improves the C/E values of the integral experimental data, and reduces the uncertainty induced by the nuclear data. ADJ2017 is expected to be widely used in the analysis and design research of fast reactors. Moreover, it is expected that the integral experimental data used for ADJ2017 can be utilized as a standard database of FBR core core design.

JAEA Reports

Study on nuclear analysis method for high temperature gas-cooled reactor and its nuclear design (Thesis)

Goto, Minoru

JAEA-Review 2014-058, 103 Pages, 2015/03

JAEA-Review-2014-058.pdf:22.36MB

The following issues were investigated using experimental data of HTTR, which is a Japan's HTGR with 30 MW thermal power. (1)Applicability of nuclear data libraries to nuclear analysis for HTGR, (2) Applicability of the improved nuclear analysis method for HTGR, (3) Effectiveness of a rod-type burnable poison on HTGR reactivity control. Using these investigation results, a nuclear design of a small-sized HTGR with 50 MW thermal power (HTR50S) was performed. In the nuclear design of HTR50S, we challenged to decrease the number of the fuel enrichments and to increase the power density compared with HTTR. As a result, the nuclear design was completed successfully by reducing the number of the fuel enrichment to only three from twelve of HTTR and increasing the power density by 1.4 times of HTTR.

Journal Articles

Experimental studies on tungsten-armour impact on nuclear responses of solid breeding blanket

Sato, Satoshi; Nakao, Makoto*; Verzilov, Y. M.; Ochiai, Kentaro; Wada, Masayuki*; Kubota, Naoyoshi; Kondo, Keitaro; Yamauchi, Michinori*; Nishitani, Takeo

Nuclear Fusion, 45(7), p.656 - 662, 2005/07

 Times Cited Count:8 Percentile:67.3(Physics, Fluids & Plasmas)

no abstracts in English

JAEA Reports

Achievements of element technology development for breeding blanket

Department of Fusion Engineering Research; Department of Materials Science

JAERI-Review 2005-012, 143 Pages, 2005/03

JAERI-Review-2005-012.pdf:11.74MB

no abstracts in English

JAEA Reports

Analyses of neutronic characteristics of STACY heterogeneous core with 1.5-cm-lattice-pitch fuel pins

Sono, Hiroki; Fukaya, Yuji; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Tech 2003-065, 61 Pages, 2003/07

JAERI-Tech-2003-065.pdf:3.11MB

A series of critical experiments using a heterogeneous core of the Static Experiment Critical Facility (STACY) in the Japan Atomic Energy Research Institute is planned in F.Y. 2003. In the experiment, the core is composed of uranyl nitrate solution ($$^{235}$$U enrichment 6 wt%) and 333 pins of uranium dioxide ($$^{235}$$U enrichment 5 wt%) loaded in lattice-pitch of 1.5 cm. Prior to the experiment, neutronic characteristics are analyzed to evaluate neutronic safety and criticality limitations of the core. The analyzed items are the parameters on criticality, reactivity and reactor shutdown margins. In the analyses, a Monte Carlo code, MVP, and a neutronics code system, SRAC, have been used with an evaluated nuclear data library, JENDL-3.3. By using the calculated characteristics, simplified equations to interpolate these values and criticality limitations of the core are evaluated. It has been also confirmed that the reactor shutdown margins will comply with safety criteria under all fuel conditions in the experiments.

JAEA Reports

JAEA Reports

Multi-group diffusion perturbation calculation code PERKY; 2002

Iijima, Susumu; Okajima, Shigeaki

JAERI-Data/Code 2002-023, 44 Pages, 2002/12

JAERI-Data-Code-2002-023.pdf:1.6MB

no abstracts in English

Journal Articles

A Neutronics and burnup analysis of the accelerator-driven transmutation system with different cross section libraries

Sasa, Toshinobu; Tsujimoto, Kazufumi; Kaneko, Kunio*; Takano, Hideki

Journal of Nuclear Science and Technology, 39(Suppl.2), p.1183 - 1186, 2002/08

no abstracts in English

Journal Articles

Tritium measurements for $$^{6}$$Li-enriched Li$$_{2}$$TiO$$_{3}$$ breeding blanket experiments with D-T neutrons

Klix, A.; Ochiai, Kentaro; Terada, Yasuaki; Morimoto, Yuichi*; Yamauchi, Michinori*; Hori, Junichi; Nishitani, Takeo

Fusion Science and Technology, 41(3, Part2), p.1040 - 1043, 2002/05

$$^{6}$$Li-enriched Li$$_{2}$$TiO$$_{3}$$ is one of the candidate materials for the breeding blanket of the fusion DEMO reactor. Therefore, it is necessary to measure the tritium production performance and estimate the accuracy of the measurement method. The JAERI Fusion Neutronics Source (FNS) group has carried out experiments with breeding blanket mock-ups composed of layers of beryllium, ferritic steel F82H and enriched Li$$_{2}$$TiO$$_{3}$$. Pellets of enriched Li$$_{2}$$TiO$$_{3}$$ with a diameter of 12mm and a thickness of 2mm were used as detectors inside the tritium breeding layer. After irradiation, the pellets were dissolved and the tritium activity in the sample solution was measured by liquid scintillation counting. The experimentally obtained tritium production profile in the lithium titanate layer agreed well with MCNP calculations within the estimated error of the measured values (10%). The calculation-experiment ratio was close to one for all samples. Tritium loss from the pellet during storage time (a few days) was experimentally found to be negligible.

Journal Articles

Journal Articles

Code development for the design study of the OMEGA program accelerator-driven transmutation systems

Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki

Nuclear Instruments and Methods in Physics Research A, 463(3), p.495 - 504, 2001/05

 Times Cited Count:11 Percentile:33.72

no abstracts in English

JAEA Reports

Neutronic study of DRX (Deep Sea Rector X) core for deep sea research vessel

Odano, Naoteru; Ishida, Toshihisa

JAERI-Research 2001-004, 36 Pages, 2001/03

JAERI-Research-2001-004.pdf:1.51MB

no abstracts in English

JAEA Reports

Nuclear characteristics evaluation of a pulsed reactor using solution fuel, SILENE

Nakajima, Ken

JAERI-Research 2001-003, 29 Pages, 2001/03

JAERI-Research-2001-003.pdf:1.48MB

no abstracts in English

JAEA Reports

ComparaUve analyses on nuclear charaderistics of water-cooled breeder cores

; Sato, Wakaei*;

JNC-TN9400 2000-037, 87 Pages, 2000/03

JNC-TN9400-2000-037.pdf:3.48MB

ln order to compare the nuclear characteristics of water-cooled bleeder cores with that of LMFBR, MOX fuel cell models are established for boiling and non-boiling LWR, non-boiling HWR and sodium-cooled reactor. Frst, the comarison is made between the heterogeneous cell calculation results by SRAC and those by SLAROM. The results show some differences as for neutron energy spectrum, one-grouped cross section and conversion ratio due to the different grouped cross section library (both are based on JENDL-3.2, though) used for each code, however, the difference is acceptably small for grasping the basic characteristics of the above-mentioned cores. Second, using the SLAROM code, main core parameters such as mean neutron energy, ratio of fast neutron and $$eta$$-value, are analyzed. The comparison between the cores show that softened neutron spectrum by the scattering effect of hydrogen or heavy hydrogen increase the contribution of nuclear reaction (especially for neutron capture reaction rather than fission reaction) in lower energy region comparing with LMFBR. ln order to overcome the effect, tighter lattice than LMFBR is necessary for water-cooled cores to realize the breeding of fissile nuclides. Third, effects of Pu isotopic composition on the breeding ratio are evaluated using SRAC burnup calculation. From the results, it is confirmed that degraded Pu (larger ratio of Pu-240) show the larger breeding ratio. At last, sensitivity analyses are made for k-effective and main reaction ratios. As for k-effective, using a temporary covariance data of JENDL-3.2, uncertainty resulting from the cross sections' error is analyzed for a boiling LWR and a sodium-cooled reactor. The boiling LWR core shows larger sensitivity in lower energy region than the sodium-cooled reactor (especially for the energy region lower than 1kev), And, 18-group analysis that is considered acceptably good for LMFBR analysis, should not be enough for accurate sensitivity estimation of ...

JAEA Reports

Development of a standard database for FBR core nuclear design (XI); Analysis of the experimental fast reactor "JOYO" MK-I start up test and oparation data

; Numata, Kazuyuki*

JNC-TN9400 2000-036, 138 Pages, 2000/03

JNC-TN9400-2000-036.pdf:10.16MB

Japan Nuclear Cycle Development lnstitute (JNC) had developed the adjusted nuclear cross-section library in which the results of the JUPITER experiments were renected. Using this adjusted library, the distinct improvement of the accuracy in nuclear design of FBR cores had been achieved. As a recent research, JNC develops a database of other integral data in addition to the JUPITER experiments, aiming at further improvement for accuracy and reliability. ln this report, the authors describe the evaluation of the C/E values and the sensitivity analysis for the Experimental Fast Reactor "JOYO" MK-l core. The minimal criticality, sodium void reactivity worth, fuel assembly worth and burn-up coefficient were analyzed. The results of both the minimal criticality and the fuel assembly worth, which were calculated by the standard analytical method for JUPITER experiments, agreed well with the measured values. 0n the other hand, the results of the sodium void reactivity worth have a tendency to overestimate. As for the burn-up coefficient, it was seen that the C/E values had a dispersion among the operation cycles. The authors judged that further investigation for the estimation of the experimental error will increase the applicability of the integral data to the adjusted library. Furthermore, sensitivity analyses for the minimal criticality, sodium void reactivity worth and fuel assembly worth showed the characteristics of "JOYO" MK-l core in comparison with ZPPR-9 core of JUPITER experiments.

JAEA Reports

Preparation of next generation set of group cross sections; A Task report to the Japan Nuclear Cycle Development Institute)

*

JNC-TJ9400 2000-005, 182 Pages, 2000/03

JNC-TJ9400-2000-005.pdf:4.74MB

The SLAROM code, performing fast reactor cell calculation based on a deterministic methodology, has been revised by adding the universal module PEACO of generating Ultra-fine group neutron spectra. The revised SLAROM, then, was utilized for evaluating reaction rate distributions in ZPPR-13A simulated by a 2-dim RZ homogeneous model, although actually ZPPR-13A composed of radial heterogereous cells. The reaction rate distributions of ZPPR-13A were also calculated by the code MVP, that is a continuous energy Monte Carlo calculation code based on a probabilistic methodology. By coparing both results, it was concluded that the module PEACO has excellent capability for evaluating highly accurate effective cross sections. Also it was proved that the use of a new fine group cross section library set (next generation set), reflecting behavior of cross sections of structural materials, such as Fe and O, in the fast neutron energy region, is indispensable for attaining a better agreement within 1% between both calculation methods. Also, for production of a next generation set of group cross sections, the code NJOY97.V107 was added to the group cross section production system and both front and end processing parts were prepared. This system was utilized to produce the new 70 group JFS-3 library using the evaluated nuclear data library JENDL-3.2. Furthermore, to confirm the capability of this new group cross section production system, the above new JFS-3 library was applied to core performance analysis of ZPPR-9 core with a 2-dim RZ homogeneous model and analysis of heterogeneous cells of ZPPR-9 core by using the deterministic method. Also the analysis using the code MVP was performed. Bycoaparison of both results the following conclusion has been derived; the deterministic method, with the PEACO module for resonance cross sections, contributes to improve accuracy of predicting reaction rate distributions and Na void reactivity in fast reactor cores. And it ...

JAEA Reports

Critical experiment and analysis for nitride fuel fast reactor using FCA

Ando, Masaki; Iijima, Susumu; Okajima, Shigeaki; Sakurai, Takeshi; Oigawa, Hiroyuki

JAERI-Research 2000-017, p.36 - 0, 2000/03

JAERI-Research-2000-017.pdf:1.48MB

no abstracts in English

JAEA Reports

Investigation of equilibrium core by recycling MA and LLFP in fast reactor cycle(II); lnvestigation of LLFP confined in eEquilibrium core with element separation

Mizutani, Akihiko; ;

JNC-TN9400 2000-013, 66 Pages, 2000/02

JNC-TN9400-2000-013.pdf:1.97MB

Feasibility study on a self-consistent fuel cycle system has been performed in the nuclear fuel recycle system with fast reactors. ln this system, the self-generated MAs (Minor Actinides) and LLFPs (Long-Lived Fission Products) are confined and incinerated in the fast reactor, which is called the "Equilbrium Core" concept. However, as the isotope separations for selected LLFPs have been assumed in this cycle system, it seems that this assumption is far from realistic one from the viewpoint of economy with respect to the fuel cycle system. ln this study, the possibility for realization of the "Equilibrium Core" concept is evaluated for three fuel types such as oxide, nitride and metallic fuels, provided that the isotopic separation of LLFPs is changed to the element one. This study provides, that is to say, how many LLFP elements can be confined in the "Equilibrium Core" with element separation. This report examines the nuclear properties of the "Equilibrium Core" for various combinations of LLFP incineration schemes from the viewpoints of the risk of geological disposal and the limit in confinable quantity of LLFPs. From the viewpoint of the risk of geological disposal estimated by the retardation factor, it is possible to confine with element separation for T$$_{c}$$, I and Se even in the oxide fueled core. From the standpoint of the limit of confinable amounts of LLFPs, on the other hand, T$$_{c}$$, I, S$$_{e}$$, S$$_{n}$$ and Cs can be confined with element separation in case that the nitride fuel is chosen.

JAEA Reports

Report of lower endplug welding, and testing and inspecting result for MONJU 1$$^{st}$$ reload core fuel assembly

; ; ; *; *; *; *

JNC-TN8440 2000-008, 34 Pages, 2000/02

JNC-TN8440-2000-008.pdf:2.13MB

The procedure and result of lower endplug welding, Test and Inspection and Shipment of the 1$$^{st}$$ reload core fuel assembly (80 Fuel Assemblies) for the fast breeder reactor MONJU should be report, which had examined and inspected in Tamatsukuri Branch, Material Insurance office, Quality Assurance Section, Technical Administration Division, Plutonium Fuel Center (before: Inspection Section, Plutonium Fuel Division), from June 1994 to January 1996. The number of cladding tubes welded to the endplug were total to 13,804, 7,418 for Core - Inside of 43 fuel Assemblies and 6,386 for Core-Outside of 37 fuel Assemblies. 13,794 of them, 7,414 Core-Inside and 6,379 Core-Outside were approved by the test and sent to Plutonium Fuel Center. 10 of them weren't approved mainly because of default welding. Disapproval rating is 0.07%.

JAEA Reports

Study on improvement of reactor physics analysis method for FBRs with various core concept

*; Kitada, Takanori*; Tagawa, Akihiro*; *; Takeda, Toshikazu*

JNC-TJ9400 2000-006, 272 Pages, 2000/02

JNC-TJ9400-2000-006.pdf:9.69MB

Investigation was made on the follwing three themes as a part of the improvement of reactor physics analysis method for FBR with various core concept. Part 1: Investigation of Error Estimation of Neutron Spectra in FBR and Suggestions to Improve the Accuracy. In order to improve the spectrum unfolding method used in fast experimental reactor JOYO, a trial was made to evaluate the error in the estimated neutron spectrum, cause by cause. And the evaluated errors were summed up to obtain the most probable and reasonable error as possible. The summed up error was found relatively small compared to the error caused by the uncertainty of cross section data: most of the error in the spectrum unfolding method can be attributed to the error in cross sections. It was also found that the error due to the fission spectrum causes a considerable error in the high energy neutron spectrum which is over several MeV. Part 2: Study on Reactor Physics Analysis Method for Gas-Cooled FBR. In gas-cooled FBR, the portion of coolant channels in core volume is larger than sodium-cooled FBR. This leads to strong neutron streaming effects. For sodium-cooled FBR, several methods were proposed to evaluate the neutron streaming effect, however, these methods can not be used directly to gas-cooled reactor because the direction dependent diffusion coefficient becomes infinitive along the direction pararel to the coolant chammel. In this study, a new method is proposed to evaluate the neutron streaming effect, based on the method taking the axial buckling into consideration, which method was originally proposed by K$"o$hler. Part 3: Study on Reactor Physics Analysis Method for Water-Cooled FBR An investigation was made on low-moderated water-cooled FBR, on the point that the ordinary used analysis method for FBR may give considerable difference in results in such core. In light water reactors, it is well known that the space dependence of self-shielding effect of heavy nuclides are considerably ...

78 (Records 1-20 displayed on this page)