Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Onoe, Hironori; Ishibashi, Masayuki*; Ozaki, Yusuke; Iwatsuki, Teruki
International Journal of Rock Mechanics and Mining Sciences, 144, p.104737_1 - 104737_14, 2021/08
Times Cited Count:9 Percentile:59.61(Engineering, Geological)In this study, we investigated the methodology of modeling for fractured granite around the drift at a depth of 500 m in the Mizunami Underground Laboratory, Japan as a case study. As a result, we developed the fracture modeling method to estimate not only geological parameters of fractures but also hydraulic parameters based on the reproducibility of trace length distribution of fractures. By applying this modeling method, it was possible to construct a Discrete Fracture Network (DFN) model that can accurately reproduce the statistical characteristics of fractures.
Onoe, Hironori; Yamamoto, Shinya*; Kohashi, Akio; Ozaki, Yusuke; Sakurai, Hideyuki*; Masumoto, Kiyoshi*
JAEA-Research 2018-003, 84 Pages, 2018/06
In this study, numerical experiments considered hydrogeological structures, which has high heterogeneity around the Mizunami Underground Research Laboratory and inverse analysis using in-situ data were carried out. The results showed that concentration of hydrogeological structure to be estimated and location of monitoring point is important for application of inverse analysis. Furthermore, it is concluded that inverse analysis using hydraulic response due to pumping test is effective for hydrogeological characterization.
Onoe, Hironori; Saegusa, Hiromitsu; Takeuchi, Ryuji
Doboku Gakkai Rombunshu, C (Chiken Kogaku) (Internet), 72(1), p.13 - 26, 2016/01
The Japan Atomic Energy Agency is conducting the Mizunami Underground Research Laboratory (URL) project in Mizunami, Gifu, in order to establish scientific and technical basis for geological disposal of high-level radioactive waste. This paper comprehensively describes the result of groundwater flow modeling using data of hydraulic responses and hydrochemical changes due to URL construction. Technical know-how and methodology of hydrogeological monitoring and groundwater flow modeling were presented for characterization of hydraulic heterogeneities in fractured crystalline rock. Furthermore, effectivity of data acquisition of hydrochemical changes in groundwater for validation of result of groundwater flow modeling was indicated.
Onoe, Hironori; Saegusa, Hiromitsu; Iwasaki, Riyo; Ishibashi, Masayuki; Takeuchi, Ryuji; Hama, Katsuhiro
no journal, ,
no abstracts in English