Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

None

; ;

JNC-TN7420 2000-005, 43 Pages, 2000/11

JNC-TN7420-2000-005.pdf:1.7MB

None

JAEA Reports

Influence of naturally-occurring heterogeneous complex-forming materials on the migration behavior of actinides in the geosphere (III)

Tochiyama, Osamu*

JNC-TJ8400 2000-044, 53 Pages, 2000/02

JNC-TJ8400-2000-044.pdf:1.41MB

To estimate the polyelectrolyte effect and the effect of the heterogeneous composition of humic acids, the complex formation constants of Eu(III) and Ca(II) with Aldrich humic acid and polyacrylic acid were obtained, for Eu(10$$^{-8}$$ to 10$$^{-5}$$ M) by solvent extraction with TTA and TBP in xylene, for Ca (10$$^{-10}$$M) with TTA and TOPO in cyclohexane and for Ca(10$$^{-4}$$M) by using ion-selective electrode. By defining the apparent formation as $$beta_{alpha}$$ = [MR$$_{m}$$]/([M][R]), where [R] denotes the concentration of dissociated functional group, [M] and [MR$$_{m}$$] denote the concentration of free and bound metal ion and pcH is defined as-log[H], the values of log$$beta_{alpha}$$ have been obtained at pcH 4.8 - 5.5 in 0.1 - 1.0M NaClO$$_{4}$$ and NaCl. Log$$beta_{alpha}$$ of Eu-humate varied from 5.0 to 9.3 and that of Ca-humate from 2.0 to 3.4..For both humate and polyacrylate, log$$beta_{alpha}$$ increased with pcH or with the degree of dissociation. The increase in the ionic strength O.1 to 1.0 M decreased the log$$beta_{alpha}$$, the decrease in log$$beta_{alpha}$$ of Eu(III)-humate is 1.6, that of Eu(III), polyacrylate 0.7, that of Ca(II)-humate 1.9 and that of Ca(II)-polyacrylate 1.2. While the increase in the metal ion produced no effect on log$$beta_{alpha}$$ of polyacrylate, log$$beta_{alpha}$$ of humate decreased. Depending on the concentration of Eu(III), the coexistence of Ca(II) reduced log $$beta_{alpha}$$ of humate by 0 to 0.8. The dependence of log$$beta_{alpha}$$ of humate on the metal ion concentration suggests the coexistence of strong and weak binding sites in the hmnic acid.

JAEA Reports

None

*

JNC-TJ7420 2000-001, 14 Pages, 2000/02

JNC-TJ7420-2000-001.pdf:0.27MB

no abstracts in English

JAEA Reports

QA issues for site hydrochemical data used for groundwater evolution models

Sasamoto, Hiroshi; Yui, Mikazu; D.Savag*; Bille, B.*

JNC-TN8400 99-025, 32 Pages, 1999/06

JNC-TN8400-99-025.pdf:1.94MB

Groundwater data used for modelling site or repository evolution need to be assessed for their quality and whether they are "fit for purpose", prior to utilization. This report discuss factors and issues which impinge upon the quality of such data. It is recommended that geochemical modelleres : (1)are aware of how groundwater samples were collected, whether during drilling, during hydraulic testing, or thereafter, by in-situ measurement, pumped from boreholes, or by pressurised sampler ; (2)are aware of what procedures (if any) were used to "correct" samples for drill fluid contamination and what errors were associated with those methods ; (3)are aware of whether samples were subject to de-pressurisation during sampling, and whether geochemical modelling techniques were applied to correct the compositions of samples for that process ; (4)request different measures of redox activity (e.g., electrode measurements of Eh, concentrations of different redox-sensitive aqueous species) to be applied to key groundwater samples to investigate the extent of redox equilibrium ; (5)are aware of how groundwater samples were filtered and preserved for off-site analysis ; (6)ensure that adequate methods of groundwater filtration ($$<$$ 0.1$$mu$$m) and chemical analysis are applied to ensure accurate and reproducible analyses for dissolved aluminum at low levels of concentration (generally less than 0.2 mg/L) ; (7)are aware of elemental errors and detection limits in chemical analysis of groundwater samples and assess the quality of groundwater analyses via ion exchange balances and via a comparison of measured and calculated values for total dissolved solids contents. (8)ensure that detailed mineralogical analysis is carried out on rock samples from locations where key groundwater samples have been extracted.

JAEA Reports

None

*; *

PNC-TJ1630 97-001, 37 Pages, 1997/03

PNC-TJ1630-97-001.pdf:1.5MB

no abstracts in English

JAEA Reports

None

Matsumoto, Shiro*

PNC-TJ1533 94-002, 217 Pages, 1994/03

PNC-TJ1533-94-002.pdf:7.96MB

no abstracts in English

JAEA Reports

None

PNC-TJ1214 91-003, 573 Pages, 1991/05

PNC-TJ1214-91-003.pdf:14.93MB

None

Journal Articles

Radioisotope Instruments in Environmental Pollution

Genshiryoku Kogyo, 17(8), p.32 - 36, 1972/00

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1