Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ahmed, Z.*; Wu, S.*; Sharma, A.*; Kumar, R.*; Yamano, Hidemasa; Pellegrini, M.*; Yokoyama, Ryo*; Okamoto, Koji*
International Journal of Heat and Mass Transfer, 250, p.127343_1 - 127343_17, 2025/11
Ahmed, Z.*; Sharma, A. K.*; Pellegrini, M.*; Yamano, Hidemasa; Okamoto, Koji*
Arabian Journal for Science and Engineering, 50(5), p.3361 - 3371, 2025/03
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Tanaka, Masaaki; Doda, Norihiro; Hamase, Erina; Kuwagaki, Kazuki; Mori, Takero; Okajima, Satoshi; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Hashidate, Ryuta; et al.
Nihon Kikai Gakkai Rombunshu (Internet), 91(943), p.24-00229_1 - 24-00229_12, 2025/03
To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) has been developed. In this paper, focusing on the ARKADIA-Design, achievements in the development of optimization processes in the fields of the core design, the plant structure design, and the maintenance schedule planning, as major function of ARKADIA-Design, and numerical analysis methods including coupled analysis to be used for the detailed analysis to confirm the plant performance after optimization are introduced at this point in time.
Yano, Yasuhide; Miyazawa, Takeshi; Tanno, Takashi; Akasaka, Naoaki; Yoshitake, Tsunemitsu; Kaito, Takeji; Otsuka, Satoshi
Journal of Nuclear Science and Technology, 8 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The effects of strain rate on tensile properties of irradiated modified 316 stainless steel (PNC316) claddings were investigated. PNC316 claddings were irradiated at the experimental fast reactor Joyo using CRT402 control rod assembly at 400C up to 25 dpa. Post-irradiation ring tensile tests were carried out at strain rates of 3.3
10
, 3.3
10
and 3.3
10
s
at a test temperature of 350
C. The results showed no obvious dependence of all strain rates on tensile properties, although a slight decrease in total elongation was observed at the slowest strain rate of 3.3
10
s
. In addition, only a part of fracture surface at the slowest strain rate showed intergranular type region in the inner surface area, although the grain boundary separation occurred on inner surfaces near the fracture region at all strain rates. It is suggested that presence of a high content of helium near the inner surfaces would be related to the fracture behavior.
Mori, Tetsuya; Oki, Shigeo
Nuclear Technology, 20 Pages, 2025/00
Times Cited Count:0This study investigates the characteristics of the Doppler coefficient and sodium void reactivity of a burning fast reactor core concept, which was constructed in a previous study. This concept allows for multiple recyclings of plutonium and minor actinides (transuraniums (TRU)). TRU degradation due to multiple recycling deteriorates the reactivity coefficients through indirect effects, such as by hardening the neutron spectrum and steepening the energy gradient of neutron importance. Using silicon carbide (SiC) structural material improves the reactivity coefficient by causing an opposite indirect effect of TRU degradation. This improvement results not only from neutron spectrum softening due to the neutron moderation effect from C but also from the neutron leakage effect resulting from the low structural material density. The disadvantage of increased calculation uncertainty by using SiC structural material can be practically ignored. Furthermore, the burning core has Doppler coefficient enhancement characteristics by the moderated neutron reflection effect from outside the core. This characteristic has the potential to provide a new measure for reactivity coefficient deterioration due to TRU degradation. The reactivity coefficient characteristics clarified in this study can provide valuable knowledge for future detailed designs and design improvements of a TRU burning core.
Yamano, Hidemasa; Morita, Koji*
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 9 Pages, 2024/11
Fukuda, Takanari
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 10 Pages, 2024/11
Deepening the understanding of the molten core-concrete interaction (MCCI) is of the great importance for the sake of the severe accident managements as well as the fuel debris retrieval. Due to the difficulty to perform the experimental study with the extremely hot corium, the computational fluid dynamics (CFD) is expected to provide physical insights on the thermal-hydraulics taken place in the corium. The particle method are one of the CFDs that have advantages on seamless tracking of the multi-phase multi-component flow, typically involved in the MCCI. However, the adequacy of the modelling methods for the interfacial tension has not yet well investigated, especially for the general multi-phase flow with more than three phases. Hence, in this study, a simple liquid-liquid-gas three phase flow is analyzed with the existing two types of the interfacial tension models: the continuum surface force (CSF) model and the potential model. Through the comparison, it has been implied that the CSF model gives more accurate result with the satisfactory resolution, whereas the stability is strongly dependent on the resolution of the bulk fluid. On the other hand, the potential model outperforms in terms of the stability, presumably because it does not require the numerical estimation of the geometrical information. However the inter-particle potential force seems to induces locally unphysical pressure distribution, which can be especially detrimental on the multiple interface junctions.
Wozniak, N.*; Shemon, E.*; Feng, B.*; Ohgama, Kazuya; Doda, Norihiro; Uwaba, Tomoyuki; Futagami, Satoshi; Tanaka, Masaaki; Yamano, Hidemasa; Ota, Hirokazu*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
To enhance the accuracy of the safety evaluations in sodium-cooled fast reactors, it is necessary to develop a method to realistically evaluate the reactivity caused by core deformation. In this regard, Japan and the United States jointly conducted a benchmark analysis of thermal bowing experiments using multiple ducts of Joyo-type fuel assembly. The aim was to confirm the validity of the core bowing analysis codes. Comparisons of analysis and test results revealed that the core bowing analysis codes used by both countries were able to reasonably predict the thermal bowing of a row of assemblies.
Ohgama, Kazuya; Doda, Norihiro; Uwaba, Tomoyuki; Futagami, Satoshi; Tanaka, Masaaki; Yamano, Hidemasa; Ota, Hirokazu*; Ogata, Takanari*; Wozniak, N.*; Shemon, E.*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
To enhance the accuracy of the safety evaluations in sodium-cooled fast reactors, it is necessary to develop a method to realistically evaluate the reactivity caused by core deformation. In this regard, Japan and the United States jointly conducted a benchmark analysis of thermal bowing experiments of a single duct of Joyo-type fuel assembly. The aim was to confirm the validity of the core bowing analysis codes. Comparisons of analysis and test results revealed that the core bowing analysis codes used by both countries were able to reasonably predict the axial distribution of horizontal duct displacement of a single duct due to thermal bowing and the contact load on the duct pad.
Yamano, Hidemasa; Futagami, Satoshi; Doda, Norihiro; Tagami, Hirotaka; Uchibori, Akihiro; Ogata, Takanari*; Ota, Hirokazu*
Nihon Kikai Gakkai 2024-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2024/09
Ahmed, Z.*; Wu, S.*; Pellegrini, M.*; Okamoto, Koji*; Sharma, A.*; Yamano, Hidemasa
Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 14 Pages, 2024/08
The analysis show that once eutectic reaction occurs, the boron diffuses into the stainless steel (SS) wall. Melting initiates at the BC and SS interface, with melt flow following SS cladding penetration. Also, we observed that as temperature rises, a proportional increase in the boron concentration within the melt. The updated MPS method indicated a computational capability of the eutectic reaction model used to effectively analyze control rod eutectic reactions, simulating severe accidents, and its subsequent relocation to understand the effect of B
C ingress into the core.
Yamano, Hidemasa; Futagami, Satoshi; Higurashi, Koichi*
Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 12 Pages, 2024/08
This paper describes the application of safety design criteria (SDC) and safety design guidelines (SDG) developed in the Generation-IV International Forum on the natural circulation of sodium to sodium-cooled fast reactors (SFRs) recently designed in Japan.
Morita, Koji*; Yamano, Hidemasa
Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 12 Pages, 2024/08
This paper describes the generalized model developed for these eutectic reactions between boron carbide (BC) and stainless steel (SS) as well as for the reactions that occur between eutectic reaction products in the solid and liquid states and SS or B
C. We also describe the thermophysical property model based on thermophysical property data.
Yamano, Hidemasa; Takai, Toshihide; Emura, Yuki; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Morita, Koji*; Nakamura, Kinya*; Ahmed, Z.*; Pellegrini, M.*
Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 12 Pages, 2024/08
This paper describes the project overview and progress of experimental and analytical studies conducted until 2022. A specific result in this paper is to obtain first experimental data of BC-SS eutectic freezing.
Tanaka, Masaaki; Doda, Norihiro; Hamase, Erina; Kuwagaki, Kazuki; Mori, Takero; Okajima, Satoshi; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Hashidate, Ryuta; et al.
Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2024/06
To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing. In this paper, focusing on the ARKADIA-Design, achievements in the development of optimization processes in the fields of the core design, the plant structure design, and the maintenance schedule planning, as major function of ARKADIA-Design, and numerical analysis methods to be used for the detailed analysis to confirm the plant performance after optimization are introduced at this point in time.
Doda, Norihiro; Nakamine, Yoshiaki*; Yoshimura, Kazuo; Kuwagaki, Kazuki; Hamase, Erina; Yokoyama, Kenji; Kikuchi, Norihiro; Mori, Takero; Hashidate, Ryuta; Tanaka, Masaaki
Keisan Kogaku Koenkai Rombunshu (CD-ROM), 29, 6 Pages, 2024/06
As a part of the development of the "Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle (ARKADIA)" to utilize the knowledge obtained through the sodium-cooled fast reactors (SFRs) and combine the latest numerical simulation technologies, ARKADIA-Design is being developed to support the optimization of SFRs in the conceptual design stage. ARKADIA-Design consists of three systems of Virtual Plant Life System (VLS), Enhanced and AI-aided optimization System (EAS), and Knowledge Management System (KMS). A design optimization framework controls the linkage among the three systems through the interfaces in each system. In this study, we have developed a prototype of the framework for core design optimization using the coupled analysis functions in VLS and optimization control function in the linkage of EAS and VLS to investigate the applicability of the framework to the SFR design optimization process.
Hong, Z.*; Ahmed, Z.*; Pellegrini, M.*; Yamano, Hidemasa; Erkan, N.*; Sharma, A. K.*; Okamoto, Koji*
Progress in Nuclear Energy, 171, p.105160_1 - 105160_13, 2024/06
Times Cited Count:4 Percentile:93.24(Nuclear Science & Technology)In this study, it is found that the eutectic reaction between BC powder and stainless steel (SS) is considerably more rapid than that between the B
C pellet and SS. The derived reaction rate constant values for powder and pellet cases are consistently based on the reference values. Also, a composition analysis using SEM/EDS was conducted for the detailed microstructures of the powder and pellet samples. In the powder case, only one thick layer is found as the reaction layer consisting of (Fe, Cr)B precipitate, including B
C powder. In the pellet case, two layers are found in the reaction layer.
Ahmed, Z.*; Sharma, A. K.*; Pellegrini, M.*; Yamano, Hidemasa; Kano, Sho*; Okamoto, Koji*
Ceramics International, 50(10), p.17665 - 17680, 2024/05
Times Cited Count:2 Percentile:58.08(Materials Science, Ceramics)In this study, we identified two distinct failure mechanisms: the separation of stainless steel from the BC pellet, resulting in the formation of a later melting drop, and the fracture of the B
C pellet into multiple pieces, possibly due to thermal stress. The visualization technique and thermal interfacial resistance analysis precisely captured the eutectic temperature.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Nuclear Engineering and Technology, 56(3), p.832 - 845, 2024/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.
Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Uwaba, Tomoyuki; Tanaka, Masaaki; Nemoto, Toshiyuki*
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 8 Pages, 2024/03
To investigate possibility of the insertion of the reactivity by the deflection of the upper core support plate, structural mechanics analyses of the domain consisting of the fuel assemblies and core support plates and evaluation of the reactivity due to the inclination of the fuel assemblies in EBR-II were carried out. As a result, it was indicated that the upper core support plate deflected downward larger at the low flowrate condition than that at the high flowrate condition and positive reactivity was inserted due to the inclination of the fuel assemblies at the low flowrate condition.