Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

A Note on the representation of rate-of-rise of the thermal stratification interface in reactor plenum

Tokuhiro, Akira; Kimura, Nobuyuki

JNC TN9400 2000-015, 26 Pages, 1999/09

JNC-TN9400-2000-015.pdf:1.43MB

The quantification of the rate-of-rise of the thermal stratification interface, a "thin" vertical zone where the temperature gradient is the steepest, is important in assessing the potential implications of thermally-induced stress problems in liquid-metal cooled reactors. Thermal stratification can likewise occur in confined volumes containing ordinary fluids (Pr$$geq$$1), where there is an input of thermal convective energy. In the prominent case of liquid metal reactors, there have been many studies on quantifying the rate-of-rise of a defined stratification interface, in terms of one or more of the following dimensionless groups, mainly: Richardson (Ri), Reynolds (Re), Grashof (Gr), Rayleigh (Ra) and/or Froude (Fr) numbers. Stratification is also a transient process in the volume in question. In the present work the anthors presents a derivation based on order-of-magnitude analysis (OMA), including an sensible energy balance, that produces a new representation more consistent than p

JAEA Reports

Development of structural response diagram approach to evaluation of thermal stress caused by thermal striping

Kasahara, Naoto; Yacumpai, A.*; Takasho, Hideki*

JNC TN9400 99-019, 34 Pages, 1999/02

JNC-TN9400-99-019.pdf:0.97MB

At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This thermohydraulic and thermomechanical coupled phenomenon is called thermal striping, which has so complex mechanism and sometimes causes crack initiation on the structural surfaces that rational evaluation methods are required for screening rules in design codes. In this study, frequency response characteristics of structures and its mechanism were investigated by both numerical and theoretical methods. Based on above investigation, a structural response diagram was derived, which can predict stress amplitude of structures from temperature amplitude and frequency of fluids. Furthermore, this diagram was generalized to be the Non-dimensional structural response diagram by introducing non-dimensional parameters such as Biot number, non-dimensional frequency, and non-dimensional stress. The use of the Non-dimensional structural response diagram appears to evaluate thermal stress caused by thermal striping, rapidly without structural analysis, and rationally with considering attenuation by non-stationary heat transfer and thermal unloading. This diagram can also give such useful information as sensitive frequency range to adjust coupled thermohydraulic and thermomechanical analysis models taking account of four kinds of attenuation factors: turbulent mixing, molecular diffusion, non-stationaly heat transfer, and thermal unloading.

2 (Records 1-2 displayed on this page)
  • 1