Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Uesawa, Shinichiro; Yamashita, Susumu; Sano, Yoshihiko*; Yoshida, Hiroyuki
Journal of Nuclear Science and Technology, 62(6), p.523 - 541, 2025/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Japan Atomic Energy Agency (JAEA) has developed a numerical method with the JUPITER code with a porous medium model to calculate the thermal behavior in PCVs of 1F. In this study, we performed an experiment and numerical simulation of the natural convective heat transfer with the porous medium to validate JUPITER with the porous medium model. In comparison of the temperature and velocity distributions between the experiment and simulation, the temperature distribution in the simulation was in good agreement with the distribution in the experiment except the temperature near the top surface of the porous medium. The velocity distribution also agreed qualitatively with the experimental result. In addition, we also performed the numerical simulations with various effective thermal conductivity models to discuss the effect of the conductivity based on the internal structure of porous media on the natural convective heat transfer. The result indicated that the temperature distribution in the porous medium and the velocity distribution of the natural convection were significantly different for each model, and thus the conductivity of the fuel debris was one of the key parameters of in the thermal behavior analysis in 1F.
Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Yano, Yasuhide; Tokoro, Daishiro*; Sugata, Hiromasa*; Kato, Masato*
JAEA-Research 2025-002, 18 Pages, 2025/05
It is advocated as a development target of fast reactors (FRs) to allow for the of use of mixed oxide (MOX) fuels containing minor actinide (MA) separated and recovered from spent fuels with the aim of reducing the volume and toxicity of high-level radioactive waste generated from nuclear reactors. In the development of MAMOX fuels, it is important behavior to understand the thermal properties such as thermal conductivity for fuel design and analysis of the irradiation. However, there are only a few reports on the thermal properties of MA-MOX fuels, and neither the effects of MA contents nor of oxygen non-stoichiometry in MOX fuels on their thermal conductivities have been fully understood. In this study, the thermal conductivities of MOX fuels with up to 15% Am content were measured at near-stoichiometric composition and the relationship between thermal conductivity and Am content was evaluated. Moreover, the thermal conductivities of Am-doped UO fuels were also measured and evaluated by comparison with Am-MOX to evaluate the effect of Am content. The fuel samples used in this study were three types of MOX with a Pu content of 30% and different Am contents (5%, 10%, and 15%), and UO
containing 15% Am. The thermal conductivities of specimens were calculated from the thermal diffusivities measured by the laser flash method, the density of the specimens and, the heat capacity at constant pressure. The oxygen partial pressure during the measurement was controlled at that of the targeted near-stoichiometric composition. The thermal conductivities of all specimens exhibited a decline with increasing temperature and Am content, with a particularly pronounced reduction observed below 1,173 K. The results of the classical phonon scattering model analysis of the measured thermal conductivities showed that the effect of lattice strain due to the Am addition was significant on the thermal resistivity change, and the effect was comparable for both MOX and UO
.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 11 Pages, 2024/11
Our research objectives are to develop a VCS that utilizes radiative cooling to passively remove decay heat and residual heat from the RPV during expected and unexpected natural phenomena and accidents. To solve the back pressure problem around the inlet and outlet, it is necessary to minimize reliance on fluid actuation, such as water, air, etc., and to avoid using natural circulation or natural convection as much as possible to improve safety against external hazards. In this presentation, we present the structural concept of the proposed VCS integrated with the reactor building and report the results of the cooling performance evaluation based on the results of experimental and analytical studies conducted to date.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Nuclear Engineering and Technology, 56(3), p.832 - 845, 2024/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 17 Pages, 2023/04
The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.
Ishii, Yui*; Yamamoto, Arisa*; Sato, Naoki*; Nambu, Yusuke*; Kawamura, Seiko; Murai, Naoki; Ohara, Koji*; Kawaguchi, Shogo*; Mori, Takao*; Mori, Shigeo*
Physical Review B, 106(13), p.134111_1 - 134111_7, 2022/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 162, p.108512_1 - 108512_10, 2021/11
Times Cited Count:1 Percentile:9.64(Nuclear Science & Technology)The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Next, simulations on accidental conditions, such as increasing average heat-transfer coefficient via natural convection due to natural disasters, were performed with STAR-CCM+, and methodology to control the amount of heat removal was discussed. As a result, a new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the amount of heat removal by heat transfer surfaces which can be controlled. Finally, methodology to determine structural thickness of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods by using pressurized and decompressed chambers was also proposed.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 151, p.107867_1 - 107867_11, 2021/02
Times Cited Count:2 Percentile:20.20(Nuclear Science & Technology)A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We compared the RCCS using atmospheric radiation with that using atmospheric natural circulation in terms of passive safety features and control methods for heat removal. The magnitude relationship for passive safety features is heat conduction radiation
natural convection. Therefore, the magnitude for passive safety features of the former RCCS can be higher than that of the latter RCCS. In controlling the heat removal, the former RCCS changes the heat transfer area only. On the other hand, the latter RCCS needs to change the chimney effect. It is necessary to change the air resistance in the duct. Therefore, the former RCCS can control the heat removal more easily than the latter RCCS.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 133, p.830 - 836, 2019/11
Times Cited Count:2 Percentile:17.25(Nuclear Science & Technology)A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.
Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa
Nuclear Technology, 205(9), p.1154 - 1163, 2019/09
Times Cited Count:44 Percentile:97.62(Nuclear Science & Technology)An electromagnetic-levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, heat capacity, and thermal conductivity of molten 316L stainless steel (SS316L) and SS316L that contained 5mass%BC. The addition of 5mass%B
C to SS316L yielded reductions of 111 K, 6%, 19%, and 6% in the liquidus temperature, density, normal spectral emissivity, and thermal conductivity at the liquidus temperature of SS316L, respectively. The heat capacity increased by 5% with this addition. Although the 5mass%B
C addition had no clear effect on the surface tension, sulfur dissolved in the SS316L resulted in a significant decrease in the surface tension.
Kawaguchi, Munemichi; Miyahara, Shinya; Uno, Masayoshi*
Journal of Nuclear Science and Technology, 56(6), p.513 - 520, 2019/06
Times Cited Count:3 Percentile:17.25(Nuclear Science & Technology)This study revealed melting points and thermal conductivities of four samples generated by sodium-concrete reaction (SCR). We prepared the samples using two methods such as firing mixtures of sodium and grinded concrete powder, and sampling depositions after the SCR experiments. In the former, the mixing ratios were determined from the past experiment. The latter simulated the more realistic conditions such as the temperature history and the distribution of Na and concrete. The thermogravimetry-differential thermal analyzer (TG-DTA) measurement showed the melting points were 865-942C, but those of the samples containing metallic Na couldn't be clarified. In the two more realistic samples, the compression moldings in a furnace were observed. The observation revealed the softening temperature was 800-840
C and the melting point was 840-850
C, which was 10-20
C lower than the TG-DTA results. The thermodynamics calculation of FactSage 7.2 revealed the temperature of the onset of melting was caused by melting of the some components such as Na
SiO
and/or Na
SiO
. Moreover, the thermal conductivity was
=1-3W/m-K, which was comparable to xNa
O-1-xSiO
(x=0.5, 0.33, 0.25), and those at 700
C were explained by the equation of
.
Ikusawa, Yoshihisa; Morimoto, Kyoichi; Kato, Masato; Saito, Kosuke; Uno, Masayoshi*
Nuclear Technology, 205(3), p.474 - 485, 2019/03
Times Cited Count:3 Percentile:25.69(Nuclear Science & Technology)This study evaluated the effects of plutonium content and self-irradiation on the thermal conductivity of mixed-oxide (MOX) fuel. Samples of UO fuel and various MOX fuels were tested. The MOX fuels had a range of plutonium contents, and some samples were stored for 20 years. The thermal conductivity of these samples was determined from thermal diffusivity measurements taken via laser flash analysis. Although the thermal conductivity decreased with increasing plutonium content, this effect was slight. The effect of self-irradiation was investigated using the stored samples. The reduction in thermal conductivity caused by self-irradiation depended on the plutonium content, its isotopic composition, and storage time. The reduction in thermal conductivity over 20 years' storage can be predicted from the change of lattice parameter. In addition, the decrease in thermal conductivity caused by self-irradiation was recovered with heat treatment, and recovered almost completely at temperatures over 1200 K. From these evaluation results, we formulated an equation for thermal conductivity that is based on the classical phonon-transport model. This equation can predict the thermal conductivity of MOX fuel thermal conductivity by accounting for the influences of plutonium content and self-irradiation.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 122, p.201 - 206, 2018/12
Times Cited Count:6 Percentile:46.08(Nuclear Science & Technology)A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.
Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11
A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.
Nishi, Tsuyoshi; Nakajima, Kunihisa; Takano, Masahide; Kurata, Masaki; Arita, Yuji*
Journal of Nuclear Materials, 464, p.270 - 274, 2015/09
Times Cited Count:3 Percentile:23.43(Materials Science, Multidisciplinary)no abstracts in English
Aso, Tomokazu; Monde, Masanori*; Sato, Hiroshi; Hino, Ryutaro; Tatsumoto, Hideki; Kato, Takashi
Nihon Genshiryoku Gakkai Wabun Rombunshi, 5(3), p.179 - 189, 2006/09
no abstracts in English
Aso, Tomokazu; Monde, Masanori*; Sato, Hiroshi; Tatsumoto, Hideki; Kato, Takashi; Ikeda, Yujiro
LA-UR-06-3904, Vol.2, p.385 - 394, 2006/06
no abstracts in English
Ishiyama, Shintaro
Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(3), p.288 - 297, 2004/09
Target plate mode of divertor device for fusion reactor was fabricated using low activated and light material, Si/xSiC metal matrix composite and high strength and thermal conductive SiC. This model was exposed under 5MW/m30sec high heat flux and showed very good cooling performance and no damage was found after this test.
Hoshino, Tsuyoshi; Kobayashi, Takeshi*; Nashimoto, Makoto*; Kawamura, Hiroshi; Dokiya, Masayuki*; Terai, Takayuki*; Yamawaki, Michio*; Takahashi, Yoichi*
JAERI-Conf 2004-012, p.140 - 147, 2004/07
no abstracts in English
Hoshino, Tsuyoshi; Kobayashi, Takeshi*; Nashimoto, Makoto*; Kawamura, Hiroshi; Terai, Takayuki*; Yamawaki, Michio*; Takahashi, Yoichi*
Journal of the Ceramic Society of Japan, Supplement, Vol.112, No.1 (CD-ROM), p.S354 - S357, 2004/05
no abstracts in English