Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Development of a soft X-ray microscope for direct observation of inner structures of live cells

Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi*; Yasuda, Keiko*; Aoyama, Masato*; Shinohara, Kunio*

no journal, , 

We have developed a laser-plasma soft X-ray microscope combining an intense short pulsed soft X-ray source to a contact microscopy irradiating the soft X-rays onto cells directly cultivated on an X-ray photo resist and succeeded to observe inner structures of living cells directly. Using a fluorescent microscope with the soft X-ray microscope to observe the same cells at the same time, accurate identification and high resolved observation of cellular organelles have been achieved. Using the laser-plasma soft X-ray microscope inner structure of Leydig cells of mouse testis and structural deformation of apoptotic HeLa S3 nuclei have been observed. Immune cells of mouses have been observed and important structural change at the activation of immune function was found. We have found several important features by observing live cells which were unable by ordinal microscopes.

Oral presentation

In situ observation of inner structures of biological cells with a soft X-ray microscope

Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi*; Yasuda, Keiko*; Aoyama, Masato*; Tone, Shigenobu*; Shinohara, Kunio*

no journal, , 

Soft X-ray wavelengths between absorption K-edges of Oxygen and Carbon (2.3 nm and 4.4 nm) are so called "water window" and the X-ray were well absorbed by Carbon and less absorbed by water. Soft X-ray microscope using the water window X-ray as the light source has advantage to be able to observe live biological cells without any artifacts and can observe fine structures of cells compared to the light microscope. Combining with bright and short-pulsed laser-plasma soft X-ray the soft X-ray microscope which named a laser-plasma soft X-ray microscope can observe live biological cells in situ without radiation damages. We have generated bright water window soft X-ray irradiating a high power laser with 1053 nm in wavelength, 20 J in pulse energy and 600 ps in pulse duration onto thin foiled gold targets. Cultivating biological cells directly on the PMMA photoresists in situ observation of live biological cells with the laser-plasma soft X-ray microscope has been realized.

Oral presentation

Observation of inner structures of live biological cells with a laser-plasma soft X-ray microscope

Kado, Masataka

no journal, , 

Soft X-ray microscope using laser-plasma soft X-ray as the light source has advantage to be able to observe inner structures of live biological cells with the spatial resolution higher than 100 nm and provides powerful observation method to understand various life functions. In the seminar I present development of the laser-plasma soft X-ray microscope and examples of observation of live biological cells. I also present observation results of apoptotic nuclei which is one of the most important life functions.

Oral presentation

Intense laser-plasma soft-X-ray sources and application for biological X-ray microscopy

Kado, Masataka; Kishimoto, Maki; Ejima, Takeo*; Tamotsu, Satoshi*; Yasuda, Keiko*; Aoyama, Masato*; Tone, Shigenobu*; Shinohara, Kunio*

no journal, , 

Although soft X-ray microscope has an ability to observe live biological cells, in order to avoid radiation damages onto the biological cells the cells had to be frozen and live cell imaging was not realized. Since laser-plasma soft X-ray source was extremely bright and had short pulse duration, it makes possible to capture soft X-ray images of biological cells before the cells damaged. Since the spatial resolution of the soft X-ray microscope depends on the photon flux irradiated onto the samples, it is important to increase brightness of the soft X-ray sources to observe inner structures of biological cells. We have increased the brightness of the soft X-ray source and succeeded to observe inner structures of live biological cells.

Oral presentation

Observation of cellular organelles by correlative microscopy with a laser-plasma soft X-ray microscope

Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi*; Yasuda, Keiko*; Aoyama, Masato*; Tone, Shigenobu*; Shinohara, Kunio*

no journal, , 

A laser-plasma soft X-ray microscope which is combination of a highly intense laser-plasma soft X-ray source and contact microscopy has been developed. We have proposed a correlative microscopy with the laser-plasma soft X-ray microscope and a fluorescent microscope that is to observe the same biological cells with the both microscopes at the same time. Live hydrated biological cells and various cellular organelles of them have been observed with the correlative microscopy. Using the information of the cellular organelles obtained with the fluorescence microscope, inner structures obtained with the soft X-ray microscope are exactly identified. Since the spatial resolution of the soft X-ray microscope is much higher than that of the fluorescent microscope, fine structures of the cellular organelles of the live biological cells have been visualized with the correlative microscopy.

5 (Records 1-5 displayed on this page)
  • 1