Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Role of metal cations on corrosion of coated steel substrate in model aqueous layer

Islam, M. S.*; Otani, Kyohei; Sakairi, Masatoshi*

ISIJ International, 58(9), p.1616 - 1622, 2018/09

 Times Cited Count:2 Percentile:71.19(Metallurgy & Metallurgical Engineering)

To elucidate the role of Zn$$^{2+}$$ on corrosion of coated steel, the effects of metal cations on the corrosion of carbon steel in the concentrated Cl$$^{-}$$ aqueous solutions were studied by immersion tests, surface analysis and electrochemical tests. Among the examined metal cations, Zn$$^{2+}$$ showed the significant effect on corrosion inhibition of carbon steel in the Cl$$^{-}$$ aqueous solution at high concentration. XPS analysis results elucidated that Zn$$^{2+}$$ can remain on the steel surface after immersed in the solutions with Zn$$^{2+}$$. EIS measurements showed higher impedance in the solution with Zn$$^{2+}$$ than other solutions, and the results suggested that Zn$$^{2+}$$ reduced the defect points in the thin oxide film by forming a metal cation layer. Based on the experimental results, Zn$$^{2+}$$ may form a layer on the oxide film that protects the Cl$$^{-}$$ attack in the solution. The findings demonstrated that the formation of Zn layer on the oxide film is one of the main reason for showing high and longtime corrosion resistance of Zn coated steel substrate.

Journal Articles

Evaluation of value for hydrogen release from high-level liquid waste,III; Influence of metal components on hydrogen release from gamma-ray irradiated aqueous nitric acid solution

; Miyata, Teijiro

Nippon Genshiryoku Gakkai-Shi, 38(12), p.992 - 1000, 1996/00

 Times Cited Count:1 Percentile:84.94(Nuclear Science & Technology)

no abstracts in English

2 (Records 1-2 displayed on this page)
  • 1