Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Saito, Hiroyuki*; Machida, Akihiko*; Iizuka, Riko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Scientific Reports (Internet), 10, p.9934_1 - 9934_8, 2020/06
Times Cited Count:0 Percentile:100(Multidisciplinary Sciences)Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 GPa. The ' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD
at 673 K and 6.1 GPa and FeD
at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD
. In the dhcp FeD
at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11
0.06 B/Fe-atom aligned ferromagnetically in parallel on the Fe planes.
Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Scientific Reports (Internet), 9(1), p.12290_1 - 12290_9, 2019/08
Times Cited Count:3 Percentile:34.9(Multidisciplinary Sciences)Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature () and pressure (
) conditions, including those corresponding to the Earth's inner core.
X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeH
compositions when
. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5)
/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in
with
, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive
-
-
region.
Iizuka, Riko*; Yagi, Takehiko*; Goto, Hirotada*; Okuchi, Takuo*; Hattori, Takanori; Sano, Asami
Hamon, 27(3), p.104 - 108, 2017/08
Hydrogen is the most abundant element in the solar system and is considered to be one of the promising candidates of the light elements in the Earth's core. However, the amount of hydrogen dissolved in the core and its process are still unknown because hydrogen cannot be detected by X ray and easily escapes from iron at ambient conditions. In this study, we have conducted high-pressure and high-temperature in-situ neutron diffraction experiments on the iron-hydrous mineral system using PLANET in J-PARC. We observed that the water, which was dissociated from a hydrous mineral, reacted with iron to form both iron oxide and iron hydride at about 4 GPa. Iron hydride remained stable after further increase in temperature. This formation occurred at 1000K, where no materials melted. This suggests that hydrogen dissolved into iron before any other light elements dissolved in the very early stage of the Earth's evolution.
Aoki, Katsutoshi*; Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami
Hamon, 25(1), p.26 - 31, 2015/02
The deuterization process of fcc Fe to form solid1solution fcc FeD was investigated by
neutron diffraction measurements at high temperature and high pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy the octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition
of 0.64(1). During deuterization, the metal-lattice expands approximately linearly with deuterium composition at a rate of 2.21
per deuterium atom. The minor occupation of tetrahedral site is likely driven by the intersite movement of deuterium atoms along the
111
direction in the fcc metal lattice. These results provide implications for the light elements in the Earth's core and the mechanism of hydrogen embrittlement of ferrous metals.