Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 605

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of neutronics and thermal-hydraulics coupled analysis method on platform for design optimization in fast reactor

Doda, Norihiro; Hamase, Erina; Yokoyama, Kenji; Tanaka, Masaaki

Dai-25-Kai Nippon Keisan Kogaku Koenkai Rombunshu (CD-ROM), 4 Pages, 2020/06

With the aim of advancing the design optimization in fast reactors, neutronics and thermal-hydraulics coupled analysis method which can consider the temporal change of neutron flux distribution in the core has been developed. A three-dimensional neutronics analysis code and a plant dynamics analysis code are coupled on a platform using Python programing. In this report, outlines of the coupling method of analysis codes, the results of its application to the actual plant under a virtual accidental condition, and the future development is described.

Journal Articles

A Study on sodium-concrete reaction in presence of internal heating

Kawaguchi, Munemichi; Miyahara, Shinya*; Uno, Masayoshi*

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021305_1 - 021305_9, 2020/04

Sodium-concrete reaction (SCR) is one of the important phenomena during severe accidents in sodium-cooled fast reactors (SFRs) owing to the generation of large sources of hydrogen and aerosols in the containment vessel. In this study, SCR experiments with an internal heater were performed to investigate the chemical reaction beneath the internal heater (800$$^{circ}$$C), which was used to simulate the obstacle and heating effect on SCR. Furthermore, the effects of the internal heater on the self-termination mechanism were discussed. The internal heater on the concrete hindered the transport of Na into the concrete. Therefore, Na could start to react with the concrete at the periphery of the internal heater, and the concrete ablation depth at the periphery was larger than under the internal heater. The high Na pool temperature of 800$$^{circ}$$C increased largely the Na aerosol release rate, which was explained by Na evaporation and hydrogen bubbling, and formed the porous reaction product layer, whose porosity was 0.54-0.59 from the mass balance of Si and image analyzing EPMA mapping. They had good agreement with each other. The porous reaction products decreased the amount of Na transport into the reaction front. The Na concentration around the reaction front became about 30wt.% despite the position of the internal heater. It was found that the Na concentration condition was one of the dominant parameters for the self-termination of SCR, even in the presence of the internal heater.

Journal Articles

Computer code analysis of irradiation performance of axially heterogeneous mixed oxide fuel elements attaining high burnup in a fast reactor

Uwaba, Tomoyuki; Yokoyama, Keisuke; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*; Pelletier, M.*

Nuclear Engineering and Design, 359, p.110448_1 - 110448_7, 2020/04

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Coupled computer code analyses of irradiation performance of axially heterogeneous mixed oxide (MOX) fuel elements with high burnup in a fast reactor were conducted. Post-irradiation experiments revealed local concentration of Cs near the interfaces between MOX fuel and blanket columns including the internal blanket of the fuel elements as well as an increase in their cladding diameters. The analyses indicated that the local Cs concentration occurred as a result of Cs axial migration from the MOX fuels toward the blanket pellets near the interfaces. Swelling of the blanket pellets induced by the formation of low-density Cs-U-O compound was not sufficient to cause pellet-to-cladding mechanical interaction (PCMI). The PCMI analyzed in the MOX fuel column regions was insignificant, and the cladding diameter increases were caused mainly by void swelling in cladding and irradiation creep due to fission gas pressure.

Journal Articles

Post-test material analysis of eutectic melting reaction of boron carbide and stainless steel

Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro

Nippon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00360_1 - 19-00360_13, 2020/03

It is necessary to simulate a eutectic melting reaction and relocation behavior of boron carbide (B$$_{4}$$C) as a control rod material and stainless steel (SS) during a core disruptive accident in an advanced sodium-cooled fast reactor designed in Japan because the B$$_{4}$$C-SS eutectic relocation behavior has a large uncertainty in the reactivity history based on a simple calculation. A physical model simulating the eutectic melting reaction and relocation was developed and implemented into a severe accident simulation code. The developed model must be validated by using test data. To validate the physical model, therefore, the visualization tests of SS-B$$_{4}$$C eutectic melting reaction was carried out by contacting SS melts of several kg with a B$$_{4}$$C pellet heated up to about 1500 $$^{circ}$$C. The tests have shown the eutectic reaction visualization as well as freezing and relocation of the B$$_{4}$$C-SS eutectic in upper part of the solidified test piece due to the density separation. Post-test material analyses by using X-ray diffraction and transmission electron microscope techniques have indicated that FeB appeared at the B$$_{4}$$C-SS contact interface and (Fe,Cr)$$_{2}$$B at the top surface of the test piece. Glow discharge optical emission spectrometry has been applied to quantitative analysis of boron concentration distributions. The boron concentration was high at the upper surface and near the original position of the B$$_{4}$$C pellet.

Journal Articles

Development of numerical analysis code LEAP-III for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Nippon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00353_1 - 19-00353_6, 2020/03

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Outline of the R&D plan for the fast reactor cycle system development in JAEA

Hayafune, Hiroki; Maeda, Seiichiro; Ohshima, Hiroyuki

Nippon Genshiryoku Gakkai-Shi, 61(11), p.798 - 803, 2019/11

In the "Strategic Roadmap" of Fast Reactor Development decided at the Inter-Ministerial Council for Nuclear Power in December 2018, the development works for the around next 10 years were identified, and the role of JAEA was presented. In response, JAEA has prepared a framework for R&D plans for about 5 years on the fast reactor technology and the fuel cycle technology (reprocessing, fuel manufacturing, fuel and material development). In the future, JAEA will promote independent R&D works based on these plans, and provide the obtained R&D results together with various testing functions of JAEA to the activities of the private sector, etc. Through these actions, JAEA will actively contribute to the future fast reactor development. This article outlines JAEA's policy and the R&D items (development of ARKADIA; Advanced Reactor Knowledge- and AI-Aided Design Integration Approach through the whole Plant Life Cycle, development of standards and standards system, development of safety improvement technology, research in the fuel cycle technology), the policy of international cooperation, the human resource development, and the future perspective were explained.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 1; Project overview

Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.418 - 427, 2019/09

Eutectic reactions between boron carbide (B$$_{4}$$C) and stainless steel (SS) as well as its relocation are one of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors. Since such behaviors have never been simulated in CDA numerical analyses, it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study is focusing on B$$_{4}$$C-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in the range from solid to liquid state. The physical model is developed for a severe accident computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies by 2017. Specific results in this paper is boron concentration distributions of solidified B$$_{4}$$C-SS eutectic sample in the eutectic melting experiments, which would be used for the validation of the eutectic physical model implemented into the computer code.

Journal Articles

Verification of detailed core-bowing analysis code ARKAS_cellule with IAEA benchmark problems

Ota, Hirokazu*; Ohgama, Kazuya; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.30 - 39, 2019/09

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 3; Effect of B$$_{4}$$C addition on thermophysical properties of austenitic stainless steel in a liquid state

Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.853 - 857, 2019/09

Thermophysical properties of molten mixture of 316L stainless steel (SS316L) and control-rod material (B$$_{4}$$C) are necessary for the development of computer simulation codes that describe core degradation mechanisms during severe accidents in nuclear power plants involving sodium-cooled fast reactors. The effect of B$$_{4}$$C addition to SS316L on the solidus and liquidus temperatures were first measured by differential scanning calorimetry. An electromagnetic levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, specific heat capacity, and thermal conductivity of molten SS316L and SS316L containing B$$_{4}$$C. The effects of B$$_{4}$$C addition to SS316L on the thermophysical properties were studied up to 10 mass%.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 5; Validation of a multi-phase model for eutectic reaction between molten stainless steel and B$$_{4}$$C

Liu, X.*; Morita, Koji*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.47 - 51, 2019/09

Investigation of the eutectic reaction in a core disruptive accident of sodium cooled reactor is of importance since reactor criticality will be affected by the change in reactivity after eutectic reaction. In this study, we performed 1st step of validation analysis using a fast reactor safety analysis code, SIMMER-III, with the developed model based on a new series of experiments, where a B$$_{4}$$C pellet was immersed into a molten stainless steel (SS) pool. The simulation results showed the general behavior of eutectic material formation measured in the experiments reasonably. The eutectic reaction consumes solid B$$_{4}$$C and liquid SS, and then the liquid eutectic composition is produced at the early stage of reaction due to the high temperature of molten SS. Movement of the eutectic material in the molten pool leads to the redistribution of boron element. Molten SS pool then freezes to solid SS and movement of eutectic material is stopped by surrounding solid SS. Boron concentration in the pool was measured after molten SS freezes into a solid. Simulation results indicate that boron tends to accumulate in the upper part of the molten pool. This is attributed to the buoyancy force acting on lighter boron in the molten SS pool. A parametric study was also conducted by changing the initial temperature of B$$_{4}$$C pellet and SS to investigate the temperature sensitivity on the eutectic reaction behavior.

Journal Articles

Establishment of guideline for credibility assessment of nuclear simulations in the Atomic Energy Society of Japan

Tanaka, Masaaki; Kudo, Yoshiro*; Nakada, Kotaro*; Koshizuka, Seiichi*

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.1473 - 1484, 2019/08

Verification and validation (V&V) including uncertainty quantification on modeling and simulation activities has been very much focused on. Due to increase of requirement for standardization of the procedures on the V&V and prediction process to enhance the simulation credibility, "Guideline for Credibility Assessment of Nuclear Simulations (AESJ-SC-A008: 2015)" was published on July 2016 from the AESJ through ten-year discussion. The paper describes brief history of discussion in the AESJ to the publication and introductory explanation of the procedures in the five major elements and one scheme described in the Guideline. And also, a practical experience of the V&V activity according to the fundamental concept indicated in the Guideline is introduced.

JAEA Reports

Assessment report on research and development activities; Activity "Research and development on fast reactor cycle technologies" (Interim report)

Sector of Fast Reactor and Advanced Reactor Research and Development

JAEA-Evaluation 2019-004, 47 Pages, 2019/06


Japan Atomic Energy Agency (hereafter referred to as "JAEA") consulted with the "Evaluation Committee of Research and Development Activities for Fast Reactor Cycle" (hereinafter referred to as "Committee"), which consists of specialists in the fields of the evaluation subjects of fast reactor cycle technologies, for interim assessment of R&D activities of fast reactor cycle in the 3rd Mid- and Long-Term Plan (from April 2015 to March 2022) in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and Regulation on Conduct for Evaluation of R&D Activities" by JAEA. In response to the JAEA's request, the Committee assessed the R&D program of fast reactor cycle technologies during the period of four years from April 2015 to March 2018. The Committee evaluated the management and R&D activities based on the explanatory documents and oral presentations by JAEA. The results of the evaluation were compiled in assessment report that was organized including the reasons for evaluation and the opinions and recommendations. This report is issued for the purpose of actively disseminate evaluation information to the people of Japan (based on General Guideline), which lists the members of the Committee and outlines the assessment items and the review process for procedure of the assessment. The assessment report which was issued by the Committee is attached.

Journal Articles

Melting behavior and thermal conductivity of solid sodium-concrete reaction product

Kawaguchi, Munemichi; Miyahara, Shinya; Uno, Masayoshi*

Journal of Nuclear Science and Technology, 56(6), p.513 - 520, 2019/06

 Times Cited Count:1 Percentile:50.57(Nuclear Science & Technology)

This study revealed melting points and thermal conductivities of four samples generated by sodium-concrete reaction (SCR). We prepared the samples using two methods such as firing mixtures of sodium and grinded concrete powder, and sampling depositions after the SCR experiments. In the former, the mixing ratios were determined from the past experiment. The latter simulated the more realistic conditions such as the temperature history and the distribution of Na and concrete. The thermogravimetry-differential thermal analyzer (TG-DTA) measurement showed the melting points were 865-942$$^{circ}$$C, but those of the samples containing metallic Na couldn't be clarified. In the two more realistic samples, the compression moldings in a furnace were observed. The observation revealed the softening temperature was 800-840$$^{circ}$$C and the melting point was 840-850$$^{circ}$$C, which was 10-20$$^{circ}$$C lower than the TG-DTA results. The thermodynamics calculation of FactSage 7.2 revealed the temperature of the onset of melting was caused by melting of the some components such as Na$$_{2}$$SiO$$_{3}$$ and/or Na$$_{4}$$SiO$$_{4}$$. Moreover, the thermal conductivity was $$lambda$$=1-3W/m-K, which was comparable to xNa$$_{2}$$O-1-xSiO$$_{2}$$ (x=0.5, 0.33, 0.25), and those at 700$$^{circ}$$C were explained by the equation of $$NBO/T$$.

Journal Articles

Impact of safety design enhancements on construction cost of the advanced sodium loop fast reactor in Japan

Kato, Atsushi; Mukaida, Kyoko

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 10 Pages, 2019/05

Improvement of economic competitiveness is a part of key requirement in the project. By adopting innovative technologies to reduce plant commodities, JSFR could achieve economic competitiveness compared with LWR. After the Fukushima-Dai-ichi Nuclear Power Plants accident, safety enhancement measures were added on LWR in Japan mainly against external hazards. In parallel, Safety Design Criteria and Guidelines (SDC/SDG) for SFR were constructed in the framework of Generation IV international forum. Design studies of JSFR were carried out responding to GIF SDC/SDG and lessons learn from the Fukushima accident. This reports an impact of recent safety design enhancements on JSFR construction cost. Safety design enhancement adopted in JSFR.

Journal Articles

Comparison of sodium fast reactor core assembly seismic evaluation using the Japanese JAEA/MFBR/MHI and French CEA simulation tools

Yamamoto, Tomohiko; Matsubara, Shinichiro*; Harada, Hidenori*; Saunier, P.*; Martin, L.*; Gentet, D.*; Dirat, J.-F.*; Collignon, C.*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05

Japan-France collaboration on ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project is launched in 2014. In this project, Japan-France evaluates core assemblies with interferences on seismic event. The object of this study is to verify the seismic evaluation method on core assemblies between Japan and France by comparing the results. The analysis of this benchmark calculation shows a satisfactory agreement between the Japanese and French tools and the figures show a good behavior of the core in horizontal direction under French seismic condition.

Journal Articles

Activities of the GIF safety and operation project of sodium-cooled fast reactor systems

Yamano, Hidemasa; Vasile, A.*; Kang, S.-H.*; Summer, T.*; Tsige-Tamirat, H.*; Wang, J.*; Ashurko, I.*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

The Generation IV (GEN-IV) international forum is a framework for international co-operation in research and development for the next generation of nuclear energy systems. Within the GEN-IV sodium-cooled fast reactor (SFR) system arrangement, the SFR Safety and Operation (SO) project addresses the areas of safety technology and reactor operation technology developments. The aims of the SO project include (1) analyses and experiments that support establishing safety approaches and validating performance of specific safety features, (2) development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and (3) acquisition of reactor operation technology, as determined largely from experience and testing in operating SFR plants. The tasks in the SO topics are categorized into the following three work packages (WP): WP-SO-1 "Methods, Models and Codes", WP-SO-2 "Experimental Programs and Operational Experience", and WP-SO-3 "Studies of Innovative Design and Safety Systems". This paper reports recent activities within the SO project.

JAEA Reports

Development of the Unified Cross-section Set ADJ2017

Yokoyama, Kenji; Sugino, Kazuteru; Ishikawa, Makoto; Maruyama, Shuhei; Nagaya, Yasunobu; Numata, Kazuyuki*; Jin, Tomoyuki*

JAEA-Research 2018-011, 556 Pages, 2019/03


We have developed a new unified cross-section set ADJ2017, which is an improved version of the unified cross-section set ADJ2010 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses; the values are stored in the standard database for FBR core design via the cross-section adjustment methodology, which integrates with the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. The ADJ2017 is based on Japan's latest nuclear data library JENDL-4.0 as in the previous version of ADJ2010, and it incorporates more information on integral experimental data sets related to minor actinides (MAs) and degraded plutonium (Pu). In the creation of ADJ2010, a total of 643 integral experimental data sets were analyzed and evaluated, and 488 of the integral experimental data sets were finally selected to be used for the cross-section adjustment. In contrast, we have evaluated a total of 719 data sets, and eventually adopted 620 integral experimental data sets to create ADJ2017. ADJ2017 shows almost the same performance as ADJ2010 for the main neutronic characteristics of conventional sodium-cooled MOX-fuel fast reactors. In addition, for the neutronic characteristics related to MA and degraded Pu, ADJ2017 improves the C/E values of the integral experimental data sets, and reduces the uncertainty induced by the nuclear data. ADJ2017 is expected to be widely used in the analysis and design research of fast reactors. Moreover, it is expected that the integral experimental data sets used for ADJ2017 can be utilized as a standard database of FBR core design.

Journal Articles

10.2.2 Outline of fast reactor and development status in the world

Kamide, Hideki

Genshiryoku No Ima To Ashita, p.265 - 268, 2019/03

no abstracts in English

Journal Articles

Austenite-based stainless steel irradiation behavior of the precipitate and void swelling

Inoue, Toshihiko; Sekio, Yoshihiro; Watanabe, Hideo*

Materia, 58(2), P. 92, 2019/02

For the evaluation of irradiated segregation behavior, Austenite-based stainless steel for the fast reactor, during irradiation was evaluated by utilizing TIARA facility (Irradiate temperature: 600 $$^{circ}$$C, Dose: 100 dpa) was observed by analytical electron microscope (JEM-ARM20FC). As a result of observation, the large-size void is observed in irradiation area, and MX segregation (containing Niobium) is not observed. In un-irradiation area the MX segregation is observed. And it is observed conspicuously that Nickel is segregation on the void surface. By the latest high-performance TEM utilization, these phenomenon are able to visualize. It is expected for the clarification of the irradiation damage and mechanism of void swelling, by the analyzing these phenomenon utilization with the latest high-performance TEM utilization.

Journal Articles

Challenge next-generation nuclear system; Development of oxide dispersion strengthened ferritic steel

Otsuka, Satoshi; Kaito, Takeji

Enerugi Rebyu, 39(1), p.44 - 46, 2019/01

For performance improvement of next-generation nuclear system such as fast reactor, it has been expected to develop advanced material resistant to severe in-reactor environment (i.e. high-dose neutron irradiation at high-temperature). Japan Atomic Energy Agency (JAEA) has been developing Oxide Dispersion Strengthened (ODS) ferritic steel for long life fuel cladding tube of fast reactor. Application of ODS ferritic steel to fast reactor fuel can extend the fuel life time twice or more as long as the fuel with conventional cladding tube (i.e. modified SUS316), thus reducing fuel exchange frequency and fuel cost. It can be adaptable to high-temperature plant operation, which is favorable for improvement of power generation efficiency. This paper interprets the development of ODS ferritic steel cladding tube for sodium-cooled fast reactor, which has been led by JAEA for dozens of years.

605 (Records 1-20 displayed on this page)