Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of creep property equations of 316FR stainless steel and Mod.9Cr-1Mo steel for sodium-cooled fast reactor to achieve 60-year design life

Onizawa, Takashi; Hashidate, Ryuta

Mechanical Engineering Journal (Internet), 6(1), p.18-00477_1 - 18-00477_15, 2019/02

Aiming at enhancing its economic competitiveness and reducing radioactive waste, JAEA has proposed an attractive plant concept and made great efforts to demonstrate the applicability of some innovative technologies to the plant. One of the most practical means is to extend the design life to 60 years. Accordingly, the material strength standards set by JSME have to be extended from 300,000 to 500,000 hours but this extension requires more precise estimation of creep rupture strength and creep strain of the materials in the long term. This paper describes the development of creep property equations of 316FR stainless steel and Mod.9Cr-1Mo steel considering changes in creep mechanisms at high temperatures in the long term based on evaluations of long-term creep properties of the materials. The creep property equations developed in this study will provide more precise estimation of the creep properties in the long term than the present creep property equations of JSME.

Journal Articles

Development of core and structural materials for fast reactors

Asayama, Tai; Otsuka, Satoshi

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 15 Pages, 2017/06

This paper summarizes ongoing efforts in Japan Atomic Energy Agency on the development of core and structural materials for sodium-cooled fast reactors. For core materials, oxide dispersion strengthened (ODS) steels and 11Cr ferritic steel (PNC-FMS) will be used for the fuel pin cladding and wrapper tube, respectively. As for ODS steel, 9Cr- and 11Cr-ODS steels have been extensively developed. Their laboratory-scale manufacturing technology has been developed including reliability improvement in tube microstructure and strength homogeneity. As for the PNC-FMS wrapper tube, the development of a dissimilar joining technique with type 316 steel and properties evaluation of dissimilar welds have been carried out. For structural materials, codification of 316FR stainless steel and Modified 9Cr-1Mo steel is ongoing. Acquisition and collection of long-term data of base metal and welded joints are continued and evaluation methodologies are being developed to establish a technical basis for 60-year design.

Journal Articles

Tensile properties of austenitic stainless steels irradiated at SINQ target 3

Saito, Shigeru; Kikuchi, Kenji; Usami, Koji; Ishikawa, Akiyoshi; Nishino, Yasuharu; Kawai, Masayoshi*; Dai, Y.*

Journal of Nuclear Materials, 343(1-3), p.253 - 261, 2005/08

 Times Cited Count:9 Percentile:55.58(Materials Science, Multidisciplinary)

A beam window of a spallation target will be subjected to proton/neutron irradiation, pressure wave and thermal stresses accompanied by high-energy proton beam injection. To obtain the irradiation data, the SINQ target irradiation program (STIP) was initiated in 1996 at Paul Scherrer Institute (PSI) and has been progressing. JAERI takes part in STIP and shares the PIE work. In this study, the results of tensile tests on austenitic stainless steels, JPCA and 316F SS, will be reported. The results indicate that the irradiation causes considerable hardening and degradation of ductility. The YS increases in this study are slightly large in comparison with those irradiated at fission reactor. Strain-to-necking (STN) values show sufficient large ductility of the irradiated JPCA-SA and 316F-SA. The trends of the STN decrease in this study are slightly abrupt in comparison with those irradiated at fission reactor. All specimens, including irradiated at embrittlement temperature for austenitic steels, fractured in ductile manner.

Journal Articles

Bend-fatigue properties of 590 MeV proton irradiated JPCA and 316F SS

Saito, Shigeru; Kikuchi, Kenji; Usami, Koji; Ishikawa, Akiyoshi; Nishino, Yasuharu; Kawai, Masayoshi*; Dai, Y.*

Journal of Nuclear Materials, 329-333(Part1), p.1093 - 1097, 2004/08

 Times Cited Count:6 Percentile:42.52(Materials Science, Multidisciplinary)

In several institutes, research and development for an accelerator-driven spallation neutron source have been progressed. A beam window of a target will be subjected to proton/neutron irradiation, pressure wave and thermal stresses accompanied by high-energy proton beam injection. To obtain the irradiation data, the SINQ target irradiation program (STIP) at Paul Scherrer Institute (PSI) has been progressing. JAERI takes part in STIP and shares the PIE work. The STIP specimens are very small so that we developed a new fatigue-testing machine with ceramic piezoelectric actuator. The results showed that the numbers of cycles to failure (Nf) on the irradiated specimens were less than that of unirradiated specimens. Dpa dependence of Nf was not clearly seen in the irradiation conditions. On the other hand, fracture surface varied with irradiation conditions. Specimens irradiated at low temperature fractured in ductile manner. However, interglanular fractured surface was observed for 316F SS irradiated up to 12.5 dpa at 360$$^{circ}$$C.

Journal Articles

Development of the I-I type irradiation equipment for the HTTR

Shibata, Taiju; Kikuchi, Takayuki; Miyamoto, Satoshi*; Ogura, Kazutomo*; Ishigaki, Yoshinobu*

FAPIG, (161), p.3 - 7, 2002/07

no abstracts in English

JAEA Reports

Analysis of weld residual stresses by FINAS (1)

*;

JNC TN9400 2000-047, 114 Pages, 2000/03

JNC-TN9400-2000-047.pdf:8.25MB

Prediction of weld residual stresses by a general finite element code is beneficial to the improvement of the accuracy of integrity assessment and residual life assessment of FBR plants. This reports develops an evaluation method of weld residual stresses using FINAS. Firstly, we suggested a basic procedure derived from parametric analyses with a simple weld joint model. The procedure can be summarized as follows: (1)For heat conduction analysis, prepare different models corresponding to the number of layers to be modeled. Hand over the analytical results to the following model. (2)Use multi-linear stress-strain curves for modeling the stress-strain response of base metal and weld metal. Use the isotropic hardening rule. (3)When metals are melt, use a user-subroutine to keep stresses from arising. (4)Put the thermal expansion coefficient as zero when heat is being input. Then, using the above procedure and TIG welding, we predicted the weld residual stresses of plate and tube. The results agreed well with the other reports, showing the suggested procedure was reasonable.

JAEA Reports

Microstructural assessment of damaged materials in FBR assessment of creep damage in weldment

Momma, Yoshio*; *; ; ; ; Aoto, Kazumi

JNC TN9400 2000-044, 22 Pages, 2000/03

JNC-TN9400-2000-044.pdf:1.37MB

ln the past the microstructural observation was mostly applied to understand the materials behavior qualitatively in R&D of the new materials and the life prediction for the fast breeder reactor components. However, the correlation between the changes in properties and microstrutures must be clarified to ensure the structural integrity. Particularly we are interested in the method to correlate the long-term properties and microstructural changes at high temperatures. The current research is to quantify the changes in microstructure of the weld metal for the welded structure of the reactor vessel. ln this research we have conducted creep testing of the weld metals at 823 and 873K up to 37,000h. Two types of the weld metals (16Cr-8Ni-2Mo and 18Cr-12Ni-Mo) were subjected to the creep testing. Based on the areas of the precipitates, the microstructural characterization with time and creep damage was attempted. The creep strength of the 16Cr-8Ni-2Mo weld metal is lower than that of the 18Cr-12Ni-Mo one at higher stresses, shorter times. But there is a trend toward to become similar strength with lower stresses and increasing times. The creep-rupture ductility of the 16Cr-8Ni-2Mo weld metal is superior to that of the 18Cr-12Ni-Mo one. The creep-rupture takes place at the interface of the sigma ($$sigma$$) phases precipitated in the delta ($$delta$$) ferrites at 823K lower stresses and 873K. The amount of precipitates in the 16Cr-8Ni-2Mo weld metal is smaller than that in the 18Cr-12Ni-Mo one at each temperature and stress. Also it is apparent that the amount of the precipitates is primarily responsible to the decomposition of the $$delta$$ phase, because the amount of the residual $$delta$$ ferrites measured by the Magne-Gauge reduces with times. Using the Larson-Miller parameter it was possible to correlate the amount of the precipitates linearly with the LMP values.

JAEA Reports

Simulation of creep test on 316FR stainless steel in sodium environment at 550$$^{circ}C$$

Satmoko, A.*;

JNC TN9400 99-035, 37 Pages, 1999/04

JNC-TN9400-99-035.pdf:1.54MB

In sodium environment, materia1 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550$$^{circ}$$C in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgfmm$$^{2}$$, the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at ...

Oral presentation

Proposal of the creep rupture equation on 316FR steel for Structural material of FR

Onizawa, Takashi; Wakai, Takashi

no journal, , 

no abstracts in English

Oral presentation

The Material property equations for 316FR steel at extremely high temperature

Okuda, Takahiro; Yamashita, Hayato; Toyota, Kodai; Shimomura, Kenta; Onizawa, Takashi; Kato, Shoichi

no journal, , 

This study describes the setting of the material property equations of 316FR steel at an extremely high temperature which can be applied to severe accident conditions of generation IV fast reactors. 316FR steel will be applied to structural materials, e.g. reactor vessel, in the generation IV fast reactors. After the severe accident in Fukushima Daiichi Nuclear Power Plants, the evaluation of structural integrity was found to be very important severe accident condition. The development of the generation IV fast reactors requires the material properties of 316FR steel at the extremely high temperature. However, such data has not been acquired. Therefore, tensile and creep tests were carried out in the temperature range over 700$$^{circ}$$C for 316FR steel. Based on the acquired data from the tests, the equations that can evaluate the material properties of 316FR steel at the extremely high temperature were set up. They are an elasto-plastic stress-strain equation, a creep rupture equation and a creep strain equation.

Oral presentation

The Material property equations of structural material for generation IV fast reactors

Okuda, Takahiro

no journal, , 

This study describes the setting of the material property equations of 316FR steel at an extremely high temperature which can be applied to severe accident conditions of generation IV fast reactors. After the severe accident in Fukushima Daiichi Nuclear Power Plants, the evaluation of structural integrity was found to be very important severe accident condition. The development of the generation IV fast reactors requires the material properties of 316FR steel at the extremely high temperature. However, such data has not been acquired. Therefore, tensile and creep tests were carried out in the temperature range over 700$$^{circ}$$C for 316FR steel. Based on the acquired data from the tests, the equations that can evaluate the material properties of 316FR steel at the extremely high temperature were set up. They are a creep rupture equation and a creep strain equation.

Oral presentation

Evaluation of irradiation resistance of 316FR stainless steel under in-situ electron irradiation observation

Toyota, Kodai; Wakai, Eiichi; Onizawa, Takashi; Shibayama, Tamaki*; Nakagawa, Yuki*

no journal, , 

no abstracts in English

12 (Records 1-12 displayed on this page)
  • 1