Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Present status of the laser charge exchange test using the 3-MeV linac in J-PARC

Takei, Hayanori; Chishiro, Etsuji; Hirano, Koichiro; Kondo, Yasuhiro; Meigo, Shinichiro; Miura, Akihiko; Morishita, Takatoshi; Oguri, Hidetomo; Tsutsumi, Kazuyoshi

Proceedings of 5th International Beam Instrumentation Conference (IBIC 2016) (Internet), p.736 - 739, 2017/03

The Accelerator-driven System (ADS) is one of the candidates for transmuting long-lived nuclides, such as minor actinide (MA), produced by nuclear reactors. For efficient transmutation of the MA, a precise pre-diction of neutronics of ADS is required. In order to obtain the neutronics data for the ADS, the Japan Pro-ton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. The LCE strips the electron of the H$$^{-}$$ beam and neutral protons will separate at the bending magnet in the proton beam transport. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 5W equivalent was obtained under the J-PARC linac beam condition, and this value almost satisfied the power requirement of the proton beam for the TEF-P.

Journal Articles

Preliminary results of the laser charge exchange test using the 3-MeV linac in J-PARC

Takei, Hayanori; Hirano, Koichiro; Tsutsumi, Kazuyoshi; Chishiro, Etsuji; Miura, Akihiko; Kondo, Yasuhiro; Morishita, Takatoshi; Oguri, Hidetomo; Meigo, Shinichiro

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.987 - 991, 2016/11

Accelerator-driven system (ADS) is one of candidates to transmute long-lived nuclides such as minor actinide (MA) produced at nuclear reactor. For efficient transmutation of the MA, precise prediction of neutronics of ADS is indispensable. In order to obtain the neutronics data for the ADS, J-PARC has a plan to build the Transmutation Physics Experimental Facility (TEF-P). Since the TEF-P requires stable power of the beam and will operate with thermal power less than 500 W and the proton beam power of 10 W so that a stable and meticulous beam extraction method is required to extract small amount of the beam from the high power LINAC beam with 250 kW. To fulfill requirement, Laser charge exchange method (LCE) has been developed for delivery of 400-MeV proton beam with 25Hz to the TEF-P. The LCE strips the electron of H$$^{-}$$ beam and H$$^{0}$$ will separate at the bending magnet at the proton beam transport. The LCE device consists of YAG-laser with high power as 1.6 J/shot and 25 Hz and transport control system with high accuracy of the beam position. For the demonstration of the charge exchange of the H$$^{-}$$, the further LCE tests is conducted using H$$^{-}$$ beam with energy of 3-MeV at RFQ test stand in J-PARC. In this paper, present status of LCE tests is presented.

2 (Records 1-2 displayed on this page)
  • 1