Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 58

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

Journal Articles

Structure of the {U$$_{13}$$} polyoxo cluster U$$_{13}$$O$$_{8}$$Cl$$_{x}$$(MeO)$$_{38-x}$$ (x = 2.3, MeO = methoxide)

Fichter, S.*; Radoske, T.*; Ikeda, Atsushi

Acta Crystallographica Section E; Crystallographic Communications (Internet), 77(8), p.847 - 852, 2021/08

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-032, 97 Pages, 2021/01

JAEA-Review-2020-032.pdf:4.16MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase" conducted in FY2019. In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

Journal Articles

Study on the mechanism of radiolytic degradation of an extractant for minor actinides separation

Toigawa, Tomohiro; Murayama, Rin*; Kumagai, Yuta; Yamashita, Shinichi*; Suzuki, Hideya; Ban, Yasutoshi; Matsumura, Tatsuro

UTNL-R-0501, p.24 - 25, 2020/12

This report summarizes the results obtained in FY2019 at Electron Linac Facility of University of Tokyo. The radiolysis process of a diglycolamide extractant, which is expected to be used in the separation process of minor actinides (MA), in dodecane and octanol solutions was investigated by pulse radiolysis. As a result, it was suggested that by adding alcohol, the decomposition process of the diglycolamide extractant was different from the decomposition processes in the single solvent of dodecane considered that the decomposition occurred via a radical cation species of the extractant.

JAEA Reports

Critical mass evaluation of minor actinides in aqueous solution; Data for criticality safety assessment of separation process

Morita, Yasuji; Fukushima, Masahiro; Kashima, Takao*; Tsubata, Yasuhiro

JAEA-Data/Code 2020-013, 38 Pages, 2020/09

JAEA-Data-Code-2020-013.pdf:1.94MB

Critical Masses of Cm, Am and the mixture were calculated in metal-water mixtures with water reflector as a basic data for criticality safety assessment of minor actinide separation process. In the mixture of Cm-244 and Cm-245, higher ratio of Cm-245 gives smaller critical mass, but the amount of Cm-245 in the critical mass can be obtained by concentration of Cm-245 in the Cm mixture without depending on the Cm-245 ratio. Critical mass of Cm isotope mixture with 30% Cm-245 was smaller than that of Pu isotope mixture in the practical reprocessing (71% Pu-239 + 17% Pu-240 + 12% Pu-241). When Cm is separated from other element including Am and the solution is concentrated, measure for the critical accident has to be taken. Critical mass of Am-242m is smaller than that of Cm-245, but the ratio of Am-242m in the Am contained in practical spent fuel is small enough, about several percent, and therefore the critical accident by Am does not have to be considered. That by the mixture of Am and Cm does not either.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-035, 61 Pages, 2020/03

JAEA-Review-2019-035.pdf:2.9MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase". In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

Journal Articles

Improvement in flow-sheet of extraction chromatography for trivalent minor actinides recovery

Watanabe, So; Senzaki, Tatsuya; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki; Nakatani, Kiyoharu*; Matsuura, Haruaki*; Horiuchi, Yusuke*; Arai, Tsuyoshi*

Journal of Radioanalytical and Nuclear Chemistry, 322(3), p.1273 - 1277, 2019/12

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

Journal Articles

Characteristics of TPDN/SiO$$_{2}$$-P adsorbent for MA(III) recovery

Kofuji, Hirohide; Watanabe, So; Takeuchi, Masayuki; Suzuki, Hideya; Matsumura, Tatsuro; Shiwaku, Hideaki; Yaita, Tsuyoshi

Progress in Nuclear Science and Technology (Internet), 5, p.61 - 65, 2018/11

Journal Articles

Report on International Conference; Actinides 2017

Haga, Yoshinori; Yamamura, Tomoo*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(3), P. 181, 2018/03

no abstracts in English

Journal Articles

Thermodynamic equilibrium constants for important isosaccharinate reactions; A Review

Rai, D.*; Kitamura, Akira

Journal of Chemical Thermodynamics, 114, p.135 - 143, 2017/11

 Times Cited Count:4 Percentile:14.51(Thermodynamics)

Isosaccharinic acid is a cellulose degradation product that can form in low-level nuclear waste repositories and is known to form strong complexes with many elements, including actinides, disposed of in these repositories. We (1) reviewed the available data for deprotonation and lactonisation constants of isosaccharinic acid, and the isosaccharinate binding constants for Ca, Fe(III), Th, U(IV), U(VI), Np(IV), Pu(IV), and Am(III), (2) summarized complexation constant values for predicting actinide behavior in geologic repositories in the presence of isosaccharinate, and (3) outlined additional studies to acquire reliable thermodynamic data where the available data are inadequate.

Journal Articles

Research and development for accuracy improvement of neutron nuclear data on minor actinides

Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki*; Katabuchi, Tatsuya*; et al.

EPJ Web of Conferences, 146, p.11001_1 - 11001_6, 2017/09

 Times Cited Count:2 Percentile:85.61

Journal Articles

Application of FE-SEM to the measurement of U, Pu, Am in the irradiated MA-MOX fuel

Sasaki, Shinji; Tanno, Takashi; Maeda, Koji

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 6 Pages, 2017/00

During irradiation in a fast reactor, the microstructure change of the mixed oxide fuels and the changes of element distributions occur because of a radial temperature gradient. Therefore, it is important to study the irradiation behavior of MA-MOX for advancement of fast reactor fuels. In order to make detailed observations of microstructure and elemental analyses of MA-MOX, irradiated MA-MOX specimens were carried out PIE by using a FE-SEM equipped with WDX. Because fuel samples have high radio activities and emit alpha-particles, the instrument was modified. the instrument was installed in a lead shield box and the control unit was separately located outside the box. The microstructure changes were observed in irradiated MA-MOX specimen. The characteristic X-rays peaks were detected successfully. By measuring the intensities of characteristic X-rays, it was tried quantitative analysis of U, Pu, Am along radial direction of irradiated specimen.

Journal Articles

Flow-sheet study of MA recovery by extraction chromatography for SmART cycle project

Watanabe, So; Nomura, Kazunori; Kitawaki, Shinichi; Shibata, Atsuhiro; Kofuji, Hirohide; Sano, Yuichi; Takeuchi, Masayuki

Procedia Chemistry, 21, p.101 - 108, 2016/12

BB2015-3215.pdf:0.34MB

 Times Cited Count:7 Percentile:98.45

Journal Articles

Development of nitride fuel cycle technology for transmutation of minor actinides

Hayashi, Hirokazu; Nishi, Tsuyoshi*; Sato, Takumi; Kurata, Masaki

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.1811 - 1817, 2015/09

Transmutation of long-lived radioactive nuclides including minor actinides (MA: Np, Am, Cm) has been studied in Japan Atomic Energy Agency (JAEA). Accelerator-driven system (ADS) is regarded as one of the powerful tools for transmutation of MA under the double strata fuel cycle concept. Uranium-free nitride fuel was chosen as the first candidate fuel for MA transmutation using ADS. To improve the transmutation ratio of MA, reprocessing of spent fuel and reusing MA recovered from the spent fuels is necessary. Our target is to transmute 99% of MA arisen from commercial power reactor fuel cycle, with which the period until the radiotoxicity drops below that of natural uranium can be shorten from about 5000 years to about 300 years. A pyrochemical process has been proposed as the first candidate for reprocessing of the spent nitride fuel. This paper overviews the current status of the nitride fuel cycle technology. Our recent study on fuel fabrication, fuel property measurements, reprocessing of spent fuel, development of the property database of MA nitride fuel, and fuel behavior simulation code are introduced. Our research and development (R&D) plan based on the roadmap of the development is also introduced.

Journal Articles

Socio-economic effects of the material science in JAERI

Yanagisawa, Kazuaki; Takahashi, Shoji*

Scientometrics, 78(3), p.505 - 524, 2008/10

 Times Cited Count:1 Percentile:25.84(Computer Science, Interdisciplinary Applications)

A socio-economic evaluation of Material Science (MS) of JAERI was made. The goal was to reveal the emphasized basic research fields (EBRF) of MS and to observe its socio-economic networking. High ranked keywords for the former and the number of co-authored papers for the latter were used along with many MS related papers. The obtained results are: (1) The EBRF of MS of JAERI were typically represented by the keywords of ion irradiation, actinides, etc., i.e., those having a strong relation to the nuclear field. Regarding actinides, the socio-economic networking between JAERI and PS occurred at the growth rate of 3-4% per 25 years, but 8% during the past 5 years. This implies that the research cooperation between the two was markedly enhanced. (2) The EBRF of MS between JAERI and 5 selected research bodies (SRB) represented by Tokyo University was directly compared and revealed that only 7 keywords as typically represented by neutron and accelerators. After overlapping, JAERI and SRB seem to be raising the national standard level.

Journal Articles

Extraction separation of Am(III) and Eu(III) with TPEN isomers and decanoic acid

Matsumura, Tatsuro; Takeshita, Kenji*

ACS Symposium Series, 933, p.261 - 273, 2006/07

Three TPEN isomers with different positon of nitrogen donor in pyridyl groups, t2pen, t3pen and t4pen, were synthesized and the extraction separation of Am(III) and Eu(III) with these ligands and a fatty acid, decanoic acid, was investigated. All isomers were similar in the complexation in the aqueous phase, such as the protonation and the formation of metal complex, however, they showed different extraction behavior of Am and Eu. The synergistic extraction effect for Am was observed for t2pen and the high separation factor about 100 was measured, when 1:2. The value is comparable to that for the extraction system with a famous nitrogen-donor extractant, BTP. On the other hand, the extractability of other isomers was very low and no separation of Am and Eu was observed. Only t2pen, in which nitrogen donor in pyridyl groups is positioned in the vicinity of the skeletal structure (N-C-C-N structure) of ligand, is available for the extraction separation of Am.

JAEA Reports

Research and development on partitioning in JAERI; Review of the research activities until the development of 4-group partitioning process

Morita, Yasuji; Kubota, Masumitsu*

JAERI-Review 2005-041, 35 Pages, 2005/09

JAERI-Review-2005-041.pdf:2.24MB

Research and development on Partitioning in JAERI are reviewed in the present report from the beginning to the development of the 4-Group Partitioning Process and its test with real high-level liquid waste (HLLW). In the 3-Group Partitioning Process established in around 1980, elements in HLLW are separated into 3 groups of transuranium element group, Sr-Cs group and the other element group. The 4-Group Partitioning Process subsequently developed contains the separation of Tc-platinum group metals additionally. The process was tested to demonstrate its performance with real concentrated HLLW. Until then, various separation methods for various elements were studied and selection and optimization of the separation methods were carried out to establish the process. Review of the experience, findings and results is very important and valuable for future study on partitioning. The present report is prepared from this point of view.

Journal Articles

Selective separation of Am(III) from Ln(III) with a novel synergistic extraction system, N,N,N',N'-tetrakis(2-methylpyridyl)ethylenediamine (TPEN) and carboxylic acid in 1-octanol

Mirvaliev, R.*; Watanabe, Masayuki; Matsumura, Tatsuro; Tachimori, Shoichi*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 41(11), p.1122 - 1124, 2004/11

 Times Cited Count:20 Percentile:78.46(Nuclear Science & Technology)

Transmutation is a technology aimed to reduce HLW from reprocessing process. Minor actinides in the HLW will be converted to short-lived nuclides. However, lanthanides in HLW adversely affects on the efficiency of the transmutation. It is well known that separating An(III) and Ln(III) is very difficult because of their similarity of chemical properties. Therefore, the separation is one of the essential subjects to establish the transmutation technology. Considerable efforts have been devoted to the development of new extractants for the separation. N,N,N',N'-tetrakis(2-methylpyridyl)ethylenediamine (TPEN) demonstrates 100-fold preference for Am(III) over Ln(III) between stability constants with the ions in the aqueous phase. We have reported that Am(III) was selectively extracted from the aqueous phase containing Ln(III) by TPEN in nitrobenzene system and synergistic system with TPEN and D2EHPA in octanol. This work presents our recent results that Am(III) is separated from Eu(III) by a synergistic extraction system with TPEN and decanoic acid diluted with 1-octanol.

JAEA Reports

Evaluation of socio-economic effects of R&D results at Japan Atomic Energy Research Institute, 2; Socio-economic evaluation of the basic research at JAERI

The Ad Hoc Committee for Evaluation of R&D Achievements

JAERI-Review 2003-036, 75 Pages, 2003/11

JAERI-Review-2003-036.pdf:9.68MB

no abstracts in English

JAEA Reports

Proceedings of the Symposium on the Joint Research Project between JAERI and Universities "Backend Chemistry for Fuel Cycle" and "Advanced Radiation Application Research"; Results of the 4th Phase Joint Research Project and the Future Plan, February 18, 2003, The University of Tokyo, Sanjyo Hall

Committee for the Joint Research Project between JAERI and Universities; Committee for the Universities' JAERI Collaborative Research

JAERI-Conf 2003-015, 103 Pages, 2003/11

JAERI-Conf-2003-015.pdf:8.92MB

The present report describes the Proceedings of the Symposium on the Joint Research Project between JAERI and Universities - Results of the 4th Phase Joint Research Project and the Future Plan -, held at the University of Tokyo on February 18, 2003. The joint research project composed of the backend chemistry project and the advanced radiation application project was to be concluded in the end of March 2003. Hence the symposium was held in order to review the results obtained in the 4th phase project and to exchange ideas on the effective measures for the future joint collaboration in view of the past activities.

58 (Records 1-20 displayed on this page)