Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Proton-induced activation cross section measurement for aluminum with proton energy range from 0.4 to 3 GeV at J-PARC

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Hiroki

Journal of Nuclear Science and Technology, 55(8), p.955 - 961, 2018/08

 Times Cited Count:8 Percentile:54.85(Nuclear Science & Technology)

We have started an experimental program to measure activation cross sections systematically in the proton-induced spallation reaction in structural materials commonly used in high-intensity proton accelerator-based facilities, such as Japan Proton Accelerator Research Complex (J-PARC). As the first step of the program, aluminum (Al) was chosen to verify the adequacy of the measurement technique implemented in a J-PARC proton beam environment because data of Al have been relatively well studied both by experimental measurement and simulation. Activation cross sections of $$^{7}$$Be, $$^{22}$$Na, and $$^{24}$$Na in Al were measured at proton energy points from 0.4, 1.3, 2.2 to 3.0 GeV, which could be delivered smoothly from the synchrotron. The validity of experimental data has been verified by introducing an effective proton numbers determination procedure. We compared the measured data with existing experimental data, the evaluated data (JENDL-HE/2007), and the calculations with several intra-nuclear cascade models by the Particle and Heavy Ion Transport code System (PHITS) code. Although the experimental data agreed with JENDL-HE/2007, the calculations underestimated about 40%. This could come from the evaporation model (generalized evaporation model) being implemented in the PHITS code. We found that the calculations agreed with the experimental data by an upgraded PHITS code.

JAEA Reports

Measurement of high-energy neutron fluxes and spectra around the J-PARC mercury spallation neutron target using multi-foil activation method

Kasugai, Yoshimi; Harada, Masahide; Kai, Tetsuya; Oi, Motoki; Meigo, Shinichiro; Maekawa, Fujio

JAEA-Data/Code 2015-033, 28 Pages, 2016/03

JAEA-Data-Code-2015-033.pdf:1.78MB

The high-energy neutron fluxes and spectra around the mercury spallation neutron source at MLF of J-PARC were measured by the multi-foil activation method. The threshold energies of neutron reactions utilized in this experiment covered from 0.1 to 50 MeV. The foil irradiation was carried out on the first beam-run of MLF from May 30th to 31th, 2008. After the irradiation, the induced radioactivity of each foil was measured using an HPGe detector, and the neutron-induced reaction-rate distribution around the mercury target was determined. Using these data, the high-energy neutron fluxes and spectra were deduced with unfolding method in which the neutron spectra calculated with PHITS code were used as the initial-guess spectra. By comparison between the initial and the unfolded spectra, it was shown that most of the calculation results, which had been the basis of the neutronics design of the MLF target assembly, were consistent with the experimental data within $$pm$$30%.

Journal Articles

Methods for tritium production rate measurement in design-oriented blanket experiments

Verzilov, Y. M.; Ochiai, Kentaro; Nishitani, Takeo

Fusion Science and Technology, 48(1), p.650 - 653, 2005/07

 Times Cited Count:7 Percentile:44.40(Nuclear Science & Technology)

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1