Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Villaret, F.*; Boulnat, X.*; Aubry, P.*; 矢野 康英; 大塚 智史; Fabregue, D.*; de Carlan, Y.*
Materials Science & Engineering A, 824, p.141794_1 - 141794_10, 2021/09
被引用回数:0 パーセンタイル:0(Nanoscience & Nanotechnology)This article presents the Laser Beam Direct Energy Deposition (DED-LBD) process as a method to build a graded austenitic-to-martensitic steel junction. Builds were obtained by varying the ratio of the two powders during DED-LB processing. Samples with gradual transitions were successfully obtained using a high dilution rate from one layer to the next. Long austenitic grains are observed on 316L side while martensitic grains are observed on Fe-9Cr-1Mo side. In the transition zone, the microstructure is mainly martensitic. Characterizations were performed after building and after a tempering heat treatment at630C during 8h and compared to dissimilar Electron Beam (EB) welds. Before heat treatment, the DBD-LB graded area has high hardness due to fresh martensite formed during building. Tempering heat treatment reduces this hardness to 300 Hv. EDS measurements indicate that the chemical gradient between 316L and Fe-9Cr-1Mo obtained by DED-LB is smoother than the chemical change obtained in EB welds. Microstructures in DED-LB samples are quite different from those obtained by EB welding. Hardness values in DMD-LB samples and in welds are similar; the weld metal and the Fe-9Cr-1Mo HAZ are relatively hard after welding because of fresh martensite, as found in the DED-LB transition zone; both are softened by the tempering heat treatment. Both welds were overmatched at 20, 400 and 550
C.
村松 壽晴; 青柳 裕治*; 吉氏 崇浩*
日本機械学会2017年度年次大会講演論文集(DVD-ROM), 4 Pages, 2017/09
原子力機構では、レーザー加工に係わる複合物理過程を定量的に取扱うことが可能な、計算科学シミュレーションコードSPLICEを開発中である。このSPLICEコードを金属光造形加工プロセスに適用し、設計空間の可視化、レーザー照射条件の設定などのフロントローディングを通じて、当該プロセスに係わるオーバーヘッドを効果的に低減させることが可能であることを確認した。