Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yoshida, Hiroyuki; Tamai, Hidesada; Onuki, Akira; Takase, Kazuyuki; Akimoto, Hajime
Nuclear Engineering and Technology, 38(2), p.119 - 128, 2006/04
The reduced-moderation water reactor core adopts a hexagonal tight-lattice arrangement. In the core, there is no sufficient information about the effects of the gap spacing and grid spacer configuration on the flow characteristics. Thus, we start to develop a predictable technology for thermal-hydraulic performance of the core using an advanced numerical simulation technology. As a part of this technology development, we are developing a two-phase flow simulation code TPFIT with an advanced interface tracking method. The vector and parallelization of the code was conducted to fit the large-scale simulations. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.
Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*; Tamai, Hidesada
Proceedings of 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-6) (CD-ROM), 14 Pages, 2004/10
no abstracts in English
Yoshida, Hiroyuki; Nagayoshi, Takuji*; Ose, Yasuo*; Takase, Kazuyuki; Akimoto, Hajime
Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(3), p.233 - 241, 2004/09
When there are no experimental data such as the reduced-moderation water reactor (RMWR), therefore, it is very difficult to obtain highly precise predictions. The RMWR core adopts a hexagonal tight lattice arrangement with about 1 mm gap between adjacent fuel rods. In the core, there is no sufficient information about the effects of the gap spacing and grid spacer configuration on the flow characteristics. Thus, we start to develop a predictable technology for thermal-hydraulic performance of RMWR core using advanced numerical simulation technology. As part of this technology development, we are developing advanced interface tracking method to improve conservation of volume of fluid. In this paper, we describe a newly developed interface tracking method and examples of the numerical results. In the present results, the error of volume conservation in the bubbly flow is within 0.6%.
Kiuchi, Kiyoshi; Ioka, Ikuo; Tachibana, Katsumi; Suzuki, Tomio; Fukaya, Kiyoshi*; Inohara, Yasuto*; Kambara, Shozo; Kuroda, Yuji*; Miyamoto, Satoshi*; Ogura, Kazutomo*
JAERI-Research 2002-008, 63 Pages, 2002/03
no abstracts in English
Okubo, Tsutomu; Takeda, Renzo*; Iwamura, Takamichi; Yamamoto, Kazuhiko*; Okada, Hiroyuki*
Proceedings of International Conference on Back-End of the Fuel Cycle: From Research to Solutions (GLOBAL 2001) (CD-ROM), 7 Pages, 2001/09
An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated and confirmed for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle.
;
Journal of Nuclear Science and Technology, 31(6), p.510 - 520, 1994/06
Times Cited Count:19 Percentile:82.05(Nuclear Science & Technology)no abstracts in English
Asayama, Tai
no journal, ,
This paper presents a future vision for safety and structural code development for advanced non-light water reactors. The most important feature that these codes and standards should have is that they ensure that safety goals are met in the way most appropriate and practical to the characters of new reactors which could be significantly different from those of light water ones. For this purpose, the author proposes a universal structure which consists of goals, codes and standards and knowledge base. The goals will be defined in terms of safety, reliability and economy. Codes and standards will form a seamless structure which provides multiple pathways with intermediary targets that correlate the goals and candidate technical options for structure and component design. Margins will be allocated in a plant lifecycle utilizing the System Based Code Concept. Knowledge bases will support codes and standards and allows for timely technical updates. As a future vision, a concept of digitalized autonomous code in which autonomous technical updates of provisions are realized is presented.