Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Institute of Science Tokyo*
JAEA-Review 2025-026, 72 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2023. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima-Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects. In this year, we conducted bulk and micro dissolution tests of simulated fuel debris particles (UO
mechanical-treated nanoparticles, UO
chemical-treated nanoparticles, and (U,Zr)O
nanoparticles), and successfully clarified that the effects of particle sizes, reaction times, and H
O
concentrations on the dissolution behavior of each nanoparticle. In particular, it was found that (U,Zr)O
nanoparticles have different degrees of Zr catalytic reactions depending on H
O
concentrations, resulting in the generation of different amounts of gas and U. Moreover, we developed a new microfluidic device which enables to instantly react the nanoparticles with H
O
solutions, and determined dynamic aggregation and dissolution rates of the nanoparticles. The research was carried out in close collaboration with UK researchers, and achieved the expected goal of this year.
-contamination visualization (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development ProjectCollaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2025-021, 63 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for
-contamination visualization" conducted in FY2023. The present study aims to develop hand-foot-monitors for
-contamination visualization and cloth monitors for
/
-contamination visualization consisting of a portable phoswich detector. ZnS(Ag) thick films by AD method and rare earth complexes have been studied for development of
-ray scintillator materials. The scintillator properties of the newly prepared ZnS(Ag) thick films were improved from those prepared in 2022. A rare earth complex shows strong emission intensity under
-ray irradiation, which was 12.5 times higher than that of a commercially available plastic scintillator (Saint-Gobain, BC400). By optimizing the manufacturing process conditions (molding die, sintering conditions, cutting process, annealing conditions, grinding/polishing processes) for La-GPS polycrystalline thin plates, the preparing process for 50 mm square La-GPS was established. The prepared La-GPS provided excellent performance for
-ray scintillators. The cloth monitors for
/
-contamination visualization were also improved for the reflection of the actual situation. Furthermore, the basic performance of the prototype cloth monitors was evaluated, and alpha-ray energy and position distribution information were obtained. In an evaluation test of the phoswich detector, a precise discrimination between
- and
-rays was achieved.
Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
JAEA-Review 2025-019, 95 Pages, 2025/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Improvement of aerosol time-of-flight mass spectrometer for on-line measurement of tiny particles containing alpha emitters" conducted from FY2021 to FY2023. The present study aims to improve Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) in order to monitor tiny particles containing alpha emitters such as U and Pu which were generated in removing debris from the reactors of 1F. We newly fabricated the improved ATOFMS quipped with a reflectron and carried out measurements for modeled tiny particles containing U. In obtained TOF spectra, ion peaks were observed for Zr
,
U
, and their oxides as well as Zr
and
U
. Mass resolution of the ion peak of
U+ was 1,700, which demonstrates that the improved ATOFMS has sufficient mass resolution to distinguish
Pu
from
U
. In the development of the apparatus for preparing enriched and enlarged particles, we fabricated the apparatus consisting of PILS, a volume reduction tube, a supersonic atomizer, and an online dryer, and optimized apparatus conditions. In the optimized conditions, enlarged particles with size between 0.4
m and 0.8
m which are detectable with ATOFMS were dominantly produced. By analyzing the enlarged particles, these were produced by taking component elements of the apparatuses used in the enlarged process. The efficiency was evaluated to be 4.5 times. From these developments, the detection concentration limits of the apparatus were evaluated to be 7.0
10
, 4.2
10
, and 1.3
10
Bq/cm
for
U,
U, and
Pu, respectively. These values are below the air concentration limit.
Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Toigawa, Tomohiro; Hotoku, Shinobu; Kumagai, Yuta; Abe, Yuma*; Oyama, Kanichi*; Fukaya, Hiroyuki; Ban, Yasutoshi; Kida, Takashi; Hasegawa, Satoshi*; Nakano, Masanao*; et al.
Journal of Nuclear Science and Technology, 6 Pages, 2025/00
Times Cited Count:0 Percentile:0.00The effect of temperature on hydrogen production generated from radiolysis was investigated to determine the associated implications for nuclear fuel reprocessing safety. The hydrogen yield from radiolysis of plutonium nitric acid solution was measured at temperatures up to the boiling temperature of the solution. The results showed no notable temperature dependence even under boiling conditions. The impact of solution agitation on hydrogen production was also assessed, which revealed minor differences in the hydrogen yield between static and agitated conditions at room temperature. These findings suggest that high temperatures or boiling the solution do not considerably enhance hydrogen generation, and provide crucial information for accurately modeling hydrogen risks under severe accidents.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2024-016, 61 Pages, 2024/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor" conducted in FY2022. The present study aims to develop a high-resolution imaging camera for alpha dust and a high-dose rate monitor. To realize the high-resolution imaging camera for alpha dust, we have developed novel scintillation materials with emission bands of 500-800 nm. Moreover, we have prepared several materials for the camera and software. We have also developed novel scintillation materials with emission bands of 650-1,000 nm, and simulation studies have been conducted for the high-dose-rate monitor system consisting of optical fiber.
-ray visualization survey meter in high gamma and neutron background environmentTsubota, Yoichi; Kobayashi, Kenji; Ishii, Tatsuya; Hirato, Misaki; Shioya, Satoshi; Nakagawa, Takahiro
Radiation Protection Dosimetry, 200(16-18), p.1676 - 1680, 2024/11
Times Cited Count:0 Percentile:0.00(Environmental Sciences)In the decommissioning of the Fukushima Daiichi Nuclear Power Station (FDNPS, 1F), workers are removing structures from inside the buildings, monitoring radioactive contamination, and decontaminating inside the buildings. For the measurement of contamination of suit surfaces of workers, we have developed a hand-held survey meter that can measure and visualize surface radioactive contamination of
-nuclides in a high
/
-ray background environment. In order to selectively measure
-nuclides, we designed and built a prototype hand-held survey meter for
-rays, which consists of a thin-film ZnS:Ag scintillator, a multi-anode photomultiplier tube (MA-PMT), individual amplification and counting circuits for each channel of the MA-PMT. Based on the result of
-ray counting, the developed device is capable of counting the
-radiation beyond 2.1
10
cpm. In the
-ray response test, there was no
-ray response even when the detector was in close proximity to a high intensity source; The dose rate was estimated to be more than 1 Sv/h. In the future, we plan to reduce the weight and size of the device, as well as improve the usability of the device through actual testing in contaminated environments.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-022, 59 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.
/
/
-rays radiolysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development ProjectCollaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2024-019, 102 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of
/
/
-rays radiolysis" conducted from FY2020 to FY2022. The present study aims to corrosion, which is considered to be an important factor in the aging degradation of confinement functions (PCV, negative pressure maintenance system, etc.) during the fuel debris removal process. If the chemical species (especially H
O
) generated by radiolysis become locally concentrated in the areas where short-range
- and
-radiation emitting nuclides come into contact, the corrosion of steels may be greatly accelerated in those areas.
Nitta, Ayako
Nihon Genshiryoku Gakkai-Shi ATOMO
, 66(9), p.473 - 475, 2024/09
no abstracts in English
-contamination visualization (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development ProjectCollaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2024-006, 54 Pages, 2024/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for
-contamination visualization" conducted in FY2022. The present study aims to develop hand-foot-monitors for
-contamination visualization and cloth monitors for
/
-contamination visualization consisting of a portable phoswich detector for measuring
/
-contamination distribution and energy to ensure the safety and security of workers involved in the decommissioning project of the 1F. The possibility of practical application of new scintillator materials and devices was examined with the goal of developing such new instruments.
Yomogida, Takumi; Ouchi, Kazuki; Morii, Shiori; Oka, Toshitaka; Kitatsuji, Yoshihiro; Koma, Yoshikazu; Konno, Katsuhiro*
Scientific Reports (Internet), 14, p.14945_1 - 14945_11, 2024/06
Times Cited Count:2 Percentile:36.23(Multidisciplinary Sciences)Particles containing alpha (
) nuclides were identified from sediment in stagnant water in the Unit 3 reactor building of the Fukushima Daiichi Nuclear Power Station (FDiNPS). We analyzed different concentrations of alpha nuclides samples collected at two sampling sites, torus room and Main steam isolation valve (MSIV) room. Most of the
-nuclides in the stagnant water samples of the torus room and the MSIV room were present in particle fractions larger than 10
m. We detected uranium-bearing particles in
m-size by scanning electron microscopy-energy dispersive X-Ray (SEM-EDX) observation. Other short lived
-nuclides were detected by alpha track detection. The
-nuclide-containing particles with several tens to several hundred
m in size were mainly comprised iron (Fe) by SEM-EDX analysis. This study clarifies that the morphologies of U and other
-nuclides in the sediment of stagnant water in the FDiNPS's Unit 3 reactor building.
Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
JAEA-Review 2023-040, 104 Pages, 2024/05
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Improvement of aerosol time-of-flight mass spectrometer for on-line measurement of tiny particles containing alpha emitters" conducted in FY2022. The present study aims to improve Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) in order to monitor tiny particles containing alpha emitters such as U and Pu generated in removing debris from the reactors of 1F. In FY2022, we newly fabricated a prototype of the improved ATOFMS and measured collection and detection efficiencies of the particle detection unit and carried out mass measurement using the TOF part.
Tsubota, Yoichi; Kimura, Yasuhisa; Nagai, Yuya; Kojima, Sho*; Tokonami, Shinji*; Nakagawa, Takahiro
Proceedings of International Conference on Decommissioning Challenges; Role and importance of innovations (DEM 2024) (Internet), 7 Pages, 2024/05
An in-situ monitoring system for the
-aerosol in the harsh (high humidity, high
/
-ray background) environment expected inside the 1F-PCV was developed. A part of the system was installed at the glovebox dismantling site of a MOX fuel facility, and its fast response performance and long-term operation capability were demonstrated.
Takasaki, Koji
Hokeikyo Nyusu, (73), p.2 - 5, 2024/04
The development of radiation measurement and digital technology for the decommissioning of the Fukushima Daiichi Nuclear Power Plant, which is being conducted by the Remote System and Sensing Technology Division of CLADS, will be presented.
Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
JAEA-Review 2023-039, 71 Pages, 2024/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Improvement of aerosol time-of-flight mass spectrometer for on-line measurement of tiny particles containing alpha emitters" conducted in FY2021. The present study aims to improve Aerosol Time-Of-Flight Mass Spectrometer in order to monitor tiny particles containing alpha emitters such as U and Pu generated in removing debris from the reactors of 1F. In FY2021, for improving mass-resolution, we designed the optimized structure of mass spectrometer with much better mass resolution and ion transmittance than commercial ATOFMS by a PC simulation. Further, design of a detection part of ATOFMS fitted to the mass spectrometer was completed.
Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*
JAEA-Review 2023-021, 112 Pages, 2024/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted from FY2018 to FY2021 (this contract was extended to FY2021). The present study aims to understand the basic properties (size, chemical composition, isotopic composition - including concentration of
-emitters, electrostatic properties, and optical properties, etc.) of fine particles composed of silicate with insoluble properties which contain regions of highly concentrated radioactive cesium (Cs) released to the environment by the accident at the Fukushima Daiichi Nuclear Power Station of TEPCO in 2011 March.
condensed state in
Mg using the
C+
C scatteringFujikawa, Y.*; Kawabata, T.*; Adachi, S.*; Hirose, Kentaro; Makii, Hiroyuki; Nishio, Katsuhisa; Orlandi, R.; Suzaki, Fumi; 13 of others*
Physics Letters B, 848, p.138384_1 - 138384_6, 2024/01
Times Cited Count:8 Percentile:82.84(Astronomy & Astrophysics)
Mo hot atoms made by a neutron capture method from
-MoO
to waterQuach, N. M.*; Ngo, M. C.*; Yang, Y.*; Nguyen, T. B.*; Nguyen, V. T.*; Fujita, Yoshitaka; Do, T. M. D.*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Suematsu, Hisayuki*
Journal of Radioanalytical and Nuclear Chemistry, 332(10), p.4057 - 4064, 2023/10
Times Cited Count:5 Percentile:72.91(Chemistry, Analytical)Technetium-99m (
Tc) is the most widely used medical radioisotope in the world and is produced from molybdenum-99 (
Mo). Production of
Mo via the neutron capture method draws attention as an alternative to fission-derived
Mo due to non-proliferation issues, but the specific radioactivity of
Mo is extremely low. In this work, a porous
-MoO
wire was prepared as an irradiation target in order to improve the specific activity by extracting
Mo. Porous
-MoO
wire is synthesized from Mo metal wire by a two-step heating procedure. The hot atom effect of
Mo was confirmed by activity and isotope measurements of the porous
-MoO
wire after neutron irradiation and the water used for extraction. In term of the extraction effectiveness, the effectiveness of
Mo extraction in the porous
-MoO
wire was comparable to that of commercial
-MoO
powder.
Arai, Masaji; Maeda, Shigetaka
Rinsho Hoshasen, 68(10), p.963 - 970, 2023/10
Ac-225 is attracting attention as an alpha-emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of Japan's medical research and economic security. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity that can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. Efficient Actinium-225 Separation from Ra-226 irradiated in a fast reactor was studied. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.