Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 5494

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Residual stress relief effect in gradient structural steel and remaining life evaluation under stochastic fatigue loads

Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, R.*; Su, Y. H.; Ao, N.*; Li, Z. W.*; Shinohara, Takenao; Shobu, Takahisa; Wu, S. C.*

International Journal of Fatigue, 202, p.109233_1 - 109233_16, 2026/01

Journal Articles

Influence of steam flow rate on oxidation kinetics of silicon carbide at 1400-1600 $$^{circ}$$C

Pham, V. H.; Kurata, Masaki; Nagae, Yuji; Ishibashi, Ryo*; Sasaki, Masana*

Corrosion Science, 255, p.113098_1 - 113098_9, 2025/10

 Times Cited Count:0 Percentile:0.00

JAEA Reports

Horonobe Underground Research Laboratory Project Investigation Program for the Fiscal Year 2025

Nakayama, Masashi; Ishii, Eiichi; Hayano, Akira; Aoyagi, Kazuhei; Murakami, Hiroaki; Ono, Hirokazu; Takeda, Masaki; Mochizuki, Akihito; Ozaki, Yusuke; Kimura, Shun; et al.

JAEA-Review 2025-027, 80 Pages, 2025/09

JAEA-Review-2025-027.pdf:6.22MB

The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2025, we continue R&D on "Study on near-field system performance in geological environment" and "Demonstration of repository design options". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. As for "Demonstration of repository design options", the investigation, design, and evaluation techniques are to be systemized at various scales, from the tunnel to the pit, by means of an organized set of evaluation methodologies for confinement performance at these respective scales. Preliminary borehole investigations will be conducted within a 500 m gallery, with the objectives of obtaining rock strength and rock permeability data, as well as surveying the extent of the excavation damaged zone surrounding the test tunnel via tomographic analysis. A planning study for the in-situ construction test will be conducted to investigate the construction of backfill material and watertight plugs. The volume of water inflow associated with the excavation of the 500 m gallery will be observed, and its magnitude will be compared with the range of water inflow predicted in the analysis. The test plan to determine the extent of the excavation damaged zone around the pit, which is planned to be constructed in the 500 m gallery, will be studied to determine the in-situ excavation damaged zone. In addition, the investigation and evaluation methods for the amount of water inflow from fractures and the extent of the excavation damaged zone around the pit will be organized. Concerning the construction and maintenance of the subsurface facilities, excavation of the West Access Shaft and the 500 m gallery will continue. It is anticipated that the construction of the facilities will be completed by the end of the fiscal year 2025. In addition, we continue R&D on the following three tasks in the Horonobe International Project; Task A: Solute transport experiment with model testing, Task B: Systematic integration of repository technology options, and Task C: Full-scale engineered barrier system dismantling experiment.

Journal Articles

Particle arrangements and optical changes induced by the water swelling of melanin-like polydopamine layers

Watanabe, Taku*; Maejima, Yui*; Ueda, Yuki; Motokawa, Ryuhei; Takabatake, Ai*; Takeda, Shinichi*; Fudoji, Hiroshi*; Kishikawa, Keiki*; Koori, Michinari*

Langmuir, 41(34), p.22762 - 22773, 2025/09

The assembled structures of melanin particles, i.e., colloidal particles coated with a melanin-like polydopamine (PDA) layer, create vivid structural colors. While the thickness of the PDA layer influences the particle arrangement and optical properties, the underlying mechanism has remained controversial. We demonstrate that the waterswelling characteristics of PDA are crucial factors governing the dispersion and aggregation of these particles in solution. Detailed comparisons between dry and wet conditions revealed that the PDA layer readily absorbs water molecules, which leads to significant swelling in the thicker layers. The swelling of the PDA layers determined whether the particles remained dispersed or partially aggregated in the water, ultimately controlling the particle arrangement in the dry state once the water evaporated. These findings provide insights into the self-assembly of colloidal particles and offer a strategy for tuning the periodic particle order. This feature is pivotal for various applications in optical and sensing technologies.

Journal Articles

Applicability of equivalent linear three-dimensional FEM analysis of reactor buildings to the seismic response of a soillstructure interaction system

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

Nuclear Engineering and Design, 441, p.114160_1 - 114160_10, 2025/09

This paper evaluates the applicability of equivalent linear analysis of reinforced concrete model, which uses frequency-independent complex damping with a small computational load, to the seismic design of nuclear power plant reactor buildings. To this end, a three-dimensional finite element method analysis of the soil-structure interaction focusing on nonlinear and equivalent linear seismic behavior of the building embedded in an ideally uniform soil condition was performed for the Kashiwazaki-Kariwa Nuclear Power Plant Unit 7 reactor building. The equivalent linear analysis results correlated well with the nonlinear analysis results of the shear strain, acceleration, displacement, and acceleration response spectrum, demonstrating the effectiveness of the equivalent linear analysis method. Moreover, the equivalent linear analysis results were more conservative than those of nonlinear analysis using the material constitutive law in evaluating the shear strain of the external wall of the reactor building. From this result, equivalent linear analysis method tended to obtain a lower building stiffness than nonlinear analysis under the analysis conditions used in this paper.

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2025-011, 74 Pages, 2025/08

JAEA-Review-2025-011.pdf:5.31MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science &Z Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted from FY2021 to FY2023. The present study aims to develop a robot system (CORRASE: Cooperative Operation Robot system for RAdiation Source Exploration), realizing radiation source exploration with wide field of view, rapidity, and low cost. In FY2023, our research efforts focused on verification tests for radiation source exploration by summarizing the results of our previous studies. Polyhedral type gamma-ray directional detectors were fabricated from 8 BGO scintillators and shielding bodies. Radiation source exploration experiments were performed by developing a cooperative operation robot system consisting of 3 multi-legged robots carrying the gamma-ray detectors, IMUs (Inertial Measurement Units), and LiDARs (Light Detection And Ranging). An unknown test environment for the radiation source exploration was constructed by placing obstacles and a 10 MBq $$^{137}$$Cs sealed source as a simulated radioactive contamination source in a room measuring 7.8 $$times$$ 5.3 m$$^{2}$$. The developed system was used to create the environmental map, to formulate the exploration plan, to create the heatmap of the radiation counts, and to image the radiation source from the calculated optimal observation position. The localization of the simulated radioactive contamination source was successfully performed with the cooperation of the 3 robot systems by displaying the image of the radiation source fused on the environmental map. It can be concluded that the initial goal of this study has been successfully achieved by developing the robot system realizing radiation source exploration.

Journal Articles

Preliminary criticality analysis of a partially damaged reactor core under different scenarios

Nguyen, H. H.

Annals of Nuclear Energy, 218, p.111361_1 - 111361_9, 2025/08

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

This study examined the criticality characteristics of a partially damaged reactor model, in which fuels located at the core center melt into fuel debris of varying shapes, while fuels situated at the core edges remain intact. The investigation was conducted using the Serpent code with the JENDL-5 nuclear data library. The results of the calculations indicate that when the volume of fuel debris is small and maintained at a constant level, the shape of the fuel debris does not result in significant alterations in the variation law of k$$_{rm eff}$$ of the system. In contrast, for the scenario in which the volume of the fuel debris is variable, the k$$_{rm eff}$$ variation law can be divided into two groups for the reference case with a system temperature of 300 K and no boron in the water. The first group comprises fuel debris with shapes that are cuboid and cylindrical, while the second group comprises fuel debris with shapes that are spherical, cone-shaped, and truncated cone-shaped.

Journal Articles

Neutronics/thermal-hydraulics coupling simulation using JAMPAN in a single BWR assembly

Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Tada, Kenichi; Kondo, Ryoichi; Nagaya, Yasunobu; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 12(4), p.24-00461_1 - 24-00461_9, 2025/08

JAEA has developed the JAEA Advanced Multi-Physics Analysis platform for Nuclear systems (JAMPAN) to realize high-fidelity neutronics/thermal-hydraulics coupling simulations. We performed a neutronics/thermal-hydraulics coupling simulation for a single BWR fuel assembly in order to confirm that the MVP/JUPITER coupling through JAMPAN is feasible. As a result, we confirmed that the void fraction and the corresponding change in the heat generation distribution are reasonable qualitatively.

Journal Articles

Pressure-induced elongation of hydrogen-oxygen bond in sodium silicate melts

Ohashi, Tomonori*; Sakamaki, Tatsuya*; Funakoshi, Kenichi*; Steinle-Neumann, G.*; Hattori, Takanori; Yuan, L.*; Suzuki, Akio*

Journal of Mineralogical and Petrological Sciences (Internet), 120(1), p.240926a_1 - 240926a_13, 2025/06

We explore the structures of dry and hydrated (H$$_2$$O and D$$_2$$O) Na$$_6$$Si$$_8$$O$$_{19}$$ melt at 0-6 GPa and 1000-1300 K and glasses recovered from high pressure and temperatures by in-situ neutron and X-ray diffraction. The structures of the melts at 0-10 GPa and 3000 K are also investigated by ab-initio molecular dynamics simulation. In-situ neutron experiments revealed that the D-O distance increases with compression due to the formation of -O-D-O- bridging species, which is reproduced by the molecular dynamics simulations. The pressure-induced -O-D-O- formation reflects a more rigid incorporation of hydrogen, which acts as a mechanism for the experimentally observed higher solubility of water in silicate melts. Together with shrinking modifier domains, this process dominates the compression behavior of hydrous Na$$_6$$Si$$_8$$O$$_{19}$$ melt, whereas the compression of dry Na$$_6$$Si$$_8$$O$$_{19}$$ at 0-10 GPa and 3000 K is governed largely by bending of the Si-O-Si angle. The molecular dynamics simulations on hydrous Na$$_6$$Si$$_8$$O$$_{19}$$ melts further suggest that the sodium ions are scavenged from its network-modifying role via 2($$^{[4]}$$Si-O$$^-$$ + Na$$^+$$) $$rightarrow$$ $$^{[4]}$$Si-(O-$$^{[5]}$$Si-O)$$^{2-}$$ + 2Na$$^+$$ and Si-O$$^-$$ + Na$$^+$$ + Si-OH $$rightarrow$$ Si-(O-H-O-Si)$$^-$$ + Na$$^+$$ with increasing pressure.

Journal Articles

Estimation of the beam trip frequency of a proton linear accelerator for an accelerator-driven nuclear transmutation system and comparison with the allowable beam trip frequency

Takei, Hayanori

Journal of Nuclear Science and Technology, 45 Pages, 2025/06

The Japan Atomic Energy Agency is working on the research and development of an accelerator-driven nuclear transmutation system (ADS) for transmuting minor actinides. This system combines a subcritical nuclear reactor with a high-power superconducting proton linear accelerator (JADS-linac). One of the factors limiting the advancement of the JADS-linac is beam trips, which often induce thermal cycle fatigue, thereby damaging the components in the subcritical core. The average beam current of the JADS-linac is 32 times higher than that of the linear accelerator (linac) of the Japan Proton Accelerator Research Complex (J-PARC). Therefore, according to the development stage, comparing the beam trip frequency of the JADS-linac with the allowable beam trip frequency (ABTF) is necessary. Herein the beam trip frequency of the JADS-linac was estimated through a Monte Carlo program using the reliability functions based on the operational data of the J-PARC linac. The Monte Carlo program afforded the distribution of the beam trip duration, which cannot be obtained using traditional analytical methods. Results show that the frequency of the beam trips with a duration exceeding 5 min must be reduced to 27% of the current J-PARC linac level to be below the ABTF.

Journal Articles

Application study of adaptive mesh refinement method on unsteady wake vortex analysis

Alzahrani, H.*; Matsushita, Kentaro; Sakai, Takaaki*; Ezure, Toshiki; Tanaka, Masaaki

Nuclear Technology, 13 Pages, 2025/06

Development of evaluation method for cover gas entrainment by vortices generated at free surface in upper plenum of sodium-cooled fast reactor is required, and an evaluation method by predicting vortices from flow velocity distribution obtained by CFD analysis is developed. In this study, Adaptive Mesh Refinement (AMR) method is examined to improve efficiency of CFD analysis. Initial mesh was refined with two indexes: the first index (Index-1) is when the second invariant of velocity gradient tensor, Q, is negative and the second one (Index-2) is pressure gradient index added to Index-1. As a result of applying AMR method to unsteady vortices system with a flat plate and performing transient analyses with refined meshes, the result of pressure distribution and velocity around the flat plate in mesh using Index-2 was similar to the result of all refined mesh. It was also confirmed that vortices generation and growth was better simulated by refining meshes around separation area.

Journal Articles

Neutron target for high-intensity operation at J-PARC MLF

Haga, Katsuhiro; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Kinoshita, Hidetaka; Harada, Masahide

Proceedings of 16th International Particle Accelerator Conference (IPAC25) (Internet), p.3245 - 3249, 2025/06

In April 2024, the beam power at MLF attained 950 kW for the first time for long term user operation, and the beam power at the 3 GeV rapid cycle synchrotron (RCS) outlet was raised to 1 MW. This accomplishment means that the goal of the stable operation of the neutron source with 1 MW was almost achieved at last, and it's time to go on to the new stage of the neutron source R&D. There are two major challenges for the mercury target in the next stage. One is to attain the long-term operation of a mercury target. The service life of the target vessel is primarily determined by cavitation damage that occurs on the inner surface due to the injection of high-intensity pulsed proton beams. Until now, the vessel has been replaced annually to inspect the extent of the damage. However, based on the damage data obtained during 1 MW high-power operation, it has been determined that the vessel can withstand long-term operation for more than two years. Therefore, a new target vessel, which was replaced in 2024, is scheduled to be used for an extended period through 2027. Furthermore, since there are plans to increase the pulse intensity of the RCS in the future, it will be necessary to develop more effective pitting damage suppression techniques and new target vessels that can withstand even stronger proton beam pulses. In this presentation, the present status of the neutron source of MLF and future operation plans will be shown.

Journal Articles

Evaluation of stability of precipitates under irradiation in 316FR steel used as fast reactor structural material

Toyota, Kodai; Onizawa, Takashi; Wakai, Eiichi*

Research & Development in Material Science (Internet), 21(5), p.2632 - 2637, 2025/06

JAEA Reports

Thermal conductivity evaluation of Am-doped oxide fuels

Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Yano, Yasuhide; Tokoro, Daishiro*; Sugata, Hiromasa*; Kato, Masato*

JAEA-Research 2025-002, 18 Pages, 2025/05

JAEA-Research-2025-002.pdf:1.73MB

It is advocated as a development target of fast reactors (FRs) to allow for the of use of mixed oxide (MOX) fuels containing minor actinide (MA) separated and recovered from spent fuels with the aim of reducing the volume and toxicity of high-level radioactive waste generated from nuclear reactors. In the development of MAMOX fuels, it is important behavior to understand the thermal properties such as thermal conductivity for fuel design and analysis of the irradiation. However, there are only a few reports on the thermal properties of MA-MOX fuels, and neither the effects of MA contents nor of oxygen non-stoichiometry in MOX fuels on their thermal conductivities have been fully understood. In this study, the thermal conductivities of MOX fuels with up to 15% Am content were measured at near-stoichiometric composition and the relationship between thermal conductivity and Am content was evaluated. Moreover, the thermal conductivities of Am-doped UO$$_{2}$$ fuels were also measured and evaluated by comparison with Am-MOX to evaluate the effect of Am content. The fuel samples used in this study were three types of MOX with a Pu content of 30% and different Am contents (5%, 10%, and 15%), and UO$$_{2}$$ containing 15% Am. The thermal conductivities of specimens were calculated from the thermal diffusivities measured by the laser flash method, the density of the specimens and, the heat capacity at constant pressure. The oxygen partial pressure during the measurement was controlled at that of the targeted near-stoichiometric composition. The thermal conductivities of all specimens exhibited a decline with increasing temperature and Am content, with a particularly pronounced reduction observed below 1,173 K. The results of the classical phonon scattering model analysis of the measured thermal conductivities showed that the effect of lattice strain due to the Am addition was significant on the thermal resistivity change, and the effect was comparable for both MOX and UO$$_{2}$$.

Journal Articles

Investigation on multi-dimensional short-term behaviour through benchmark analysis of a large-volume sodium combustion experiment

Sonehara, Masateru; Okano, Yasushi; Uchibori, Akihiro; Oki, Hiroshi*

Journal of Nuclear Science and Technology, 62(5), p.403 - 414, 2025/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

For sodium-cooled fast reactors, understanding sodium combustion behaviour is crucial for managing sodium leakage accidents. In this study, we perform benchmark analyses of the Sandia National Laboratories (SNL) T3 experiment using the multi-dimensional thermal hydraulic code AQUA-SF. Conducted in an enclosed space with a large vessel volume of 100 m$$^3$$ and a sodium mass flow rate of 1 kg/s, the experiment highlighted the multi-dimensional effects of local temperature increase shortly after sodium injection. This study aims to extend the capabilities of AQUA-SF by focusing on the simulation of these multi-dimensional temperature variations, in particular the formation of high temperature regions at the bottom of the vessel. The proposed models include the temporary stopping of sodium droplet ignition and spray combustion of sodium splash on the floor. Furthermore, it has been shown that additional heat source near the floor is essential to enhance the reproduction of the high temperature region at the bottom. Therefore, case studies including sensitivity analyses of spray cone angle and prolonged combustion of droplets on the floor are conducted. This comprehensive approach provides valuable insights into the dynamics of sodium combustion and safety measures in sodium-cooled fast reactors.

Journal Articles

Three-dimensional localization and radioactivity quantification of radiation sources through inverse estimation based on Compton camera measurements

Sato, Yuki

Radiation Protection Dosimetry, p.ncaf046_1 - ncaf046_11, 2025/05

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

Journal Articles

Visualization of radioactive contamination around the startup transformer of the Fukushima Daiichi Nuclear Power Station Unit 3 using an integrated radiation imaging system based on a Compton camera

Sato, Yuki; Terasaka, Yuta; Ichiba, Yuta*

Journal of Nuclear Science and Technology, 62(4), p.389 - 400, 2025/04

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Crystal structures of ReO$$_3$$ under hydrostatic pressure; A Combined neutron, X-ray, Raman, and first-principles calculation study

Efthimiopoulos, I.*; Klotz, S.*; Kunc, K.*; Baptiste, B.*; Chauvigne, P.*; Hattori, Takanori

Physical Review B, 111(13), p.134103_1 - 134103_13, 2025/04

 Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)

We present a comprehensive study of the high pressure behaviour of ReO$$_3$$ using X-ray and neutron diffraction, Raman scattering and first-principles calculations to 15 GPa. We show that the ambient pressure $$Pm$$$=3$m$$ structure converts at 0.7 GPa in a continuous phase transition directly to a cubic phase with space group $$Im$$$=3 which is then stable up to at least 15 GPa. We show that previous reports of monoclinic $C2/c$$ and rhombohedral $$R$$$=3$c$$ structures in this pressure range are an artifact due to an alteration of the sample by high-flux synchrotron X-ray radiation. The structural pressure dependence of the $$Im$$$=3 phase is reported as well as the precise equation of state. Raman scattering data of both natural and isotopically enriched $^{18}$$O samples are presented. The data shed light onto the unusual transition and densification mechanism due to progressive tilting of essentially rigid ReO$$_6$$ octahedra.

JAEA Reports

Conceptual study of J-PARC Proton Beam Irradiation Facility

Meigo, Shinichiro; Iwamoto, Hiroki; Sugihara, Kenta*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Saito, Shigeru; Maekawa, Fujio

JAEA-Technology 2024-026, 123 Pages, 2025/03

JAEA-Technology-2024-026.pdf:14.22MB

Based on the design of the ADS Target Test Facility (TEF-T) at the J-PARC Transmutation Experimental Facility, a conceptual study was conducted on the J-PARC proton beam irradiation facility. This research was carried out based on the recommendations of the Nuclear Transmutation Technology Evaluation Task Force of the MEXT. The recommendations state that it is desirable to consider facility specifications that can make the most of the benefits of using the existing J-PARC proton accelerator while also solving the engineering issues of the ADS. We considered facilities that could respond to a variety of needs while reducing the facilities that were not needed in the TEF-T design. In order to clarify these diverse needs, we investigated the usage status of representative accelerator facilities around the world. As a result, it became clear that the main purposes of these facilities were (1) Material irradiation, (2) Soft error testing of semiconductor devices using spallation neutrons, (3) Production of RI for medical use, and (4) Proton beam use, and we investigated the facilities necessary for these purposes. In considering the facility concept, we assumed a user community in 2022 and reflected user opinions in the facility design. This report summarizes the results of the conceptual study of the proton irradiation facility, various needs and responses to them, the roadmap for facility construction, and future issues.

5494 (Records 1-20 displayed on this page)