Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
-ray beam measurementsOmer, M.; Shizuma, Toshiyuki*; Koizumi, Mitsuo; Taira, Yoshitaka*; Zen, H.*; Ogaki, Hideaki*; Hajima, Ryoichi*
Radiation Physics and Chemistry, 240, p.113467_1 - 113467_8, 2026/03
underwater radiation monitoring detectorJi, W.*; Lee, E.*; Ji, Y.-Y.*; Ochi, Kotaro; Yoshimura, Kazuya; Funaki, Hironori; Sanada, Yukihisa
Nuclear Engineering and Technology, 58(2), p.103933_1 - 103933_6, 2026/02
We aimed to validate the performance of an in situ underwater radiation detector, MARK-U1 (Monitoring of Ambient Radiation of KAERI - Underwater), was used to estimate
Cs activity concentration in river and reservoir sediment at predicted sites of contamination. Additionally, underwater core samples were collected to measure the radioactivity using a high-purity germanium (HPGe) detector. To estimate radioactivity, a conversion factor was derived by comparing the measured spectrum and
Cs activity in the sample. A Monte Carlo N-Particle (MCNP) simulation was conducted to determine the effective source geometry for in situ measurement. The simulation results correlated well with the on-site MARK-U1 monitoring results, with a deviation of 31.62%. These findings validate the performance of the in situ detector. This device can therefore be used to estimate
Cs activity concentration in the underwater sediment via on-site monitoring, without requiring sample collection.
Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, R.*; Su, Y. H.; Ao, N.*; Li, Z. W.*; Shinohara, Takenao; Shobu, Takahisa; Wu, S. C.*
International Journal of Fatigue, 202, p.109233_1 - 109233_16, 2026/01
Sasaki, Yuji; Kaneko, Masashi; Matsumiya, Masahiko*; Kumagai, Yuta
Journal of Molecular Liquids, 441, p.129013_1 - 129013_10, 2026/01
This study determined extraction and back-extraction conditions for the mutual separation of three light PGMs, Ru, Rh, and Pd. Results revealed that reagents containing soft N and S donor atoms efficiently extract and strip Pd through solvation. In comparison, Ru and Rh undergo ion-pair extraction, requiring both anionic metal species and cationic extractants. These essential chlorinated PGM anions and protonated extractants having amino N atoms are present in HCl media. D(Ru) and D(Rh) values of approximately 100 and 10, respectively, were obtained using nitrilo-triacet-amide (NTAamide), which exhibits tetradentate coordination. Refluxing in 3-6 M HCl at 250
C, a condition that promotes the formation of highly chlorinated PGM anionic species, increased D(Ru) and D(Rh). Based on these findings, a flow diagram for the mutual separation of three PGMs was developed.
Miyahara, Shinya*; Koie, Ryusuke*; Uno, Masayoshi*; Kawaguchi, Munemichi*; Sato, Rika; Seino, Hiroshi
Nuclear Engineering and Design, 446(Part A), p.114523_1 - 114523_14, 2026/01
Collaborative Laboratories for Advanced Decommissioning Science; Chiba University*
JAEA-Review 2025-038, 84 Pages, 2025/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2023, this report summarizes the research results of the "Research and development of remote optical measurement technology for PCV gas-phase leakage location and leakage volume estimation" conducted in FY2023. The present study aims to locate leakage points using a remote optical measurement system including Lidar, and to develop a visualization method for leakage at those points. The Lidar can be distance-resolved in the line-of-sight direction and can separate and observe signals from walls and pipes in the building and surrounding gas-phase molecules (nitrogen N
, water vapor H
O, etc.) and suspended particles (aerosols). In addition, flash Lidar, which combines a laser beam with a high-sensitivity imaging sensor, and high-sensitivity shearography, which uses interference of light waves, are used to image and visualize the leakage location and to estimate the amount of leakage. Through comparison of these methods, we will clarify the positional resolution in locating the leakage point and the lower detection limit of the leakage amount that can be visualized.
Narukawa, Takafumi*; Takata, Takashi*; Zheng, X.; Tamaki, Hitoshi; Shibamoto, Yasuteru; Maruyama, Yu; Takada, Tsuyoshi
Journal of Nuclear Engineering (Internet), 6(4), p.49_1 - 49_14, 2025/12
Ji, Y.-Y.*; Joung, S.*; Ji, W.*; Ochi, Kotaro; Sasaki, Miyuki; Sanada, Yukihisa
Journal of Radiological Protection, 45(4), p.042501_1 - 042501_11, 2025/12
This study reports the development and field validation of KAERI's UAV-based gamma-ray spectrometry system equipped with LaBr
(Ce) detectors. Joint surveys with JAEA near Fukushima Daiichi Nuclear Power Plant (FDNPP) showed reliable dose rate estimation after applying altitude based attenuation correction, through discrepancies occurred in sloped terrain. Incorporating terrain data is recommended to enhance accuracy for emergency response applications.
Hotoku, Shinobu; Ban, Yasutoshi; Konda, Miki; Kitatsuji, Yoshihiro
JAEA-Technology 2025-009, 33 Pages, 2025/11
High-level liquid waste (HLLW) produced from reprocessing of spent nuclear fuels contains heat generating nuclides such as Sr-90, Y-90, Cs-137, Ba-137m, and Am-241. Separation and recovery of these nuclides lead to reduce the volume and toxicity of high-level waste. Furthermore, the recovered nuclides and elements could be utilized as resources after purification. In this test, Sr separation by extraction chromatography using Sr resin and Pb resin, Cs separation by co-precipitation using ammonium phosphomolybdate (AMP), and Am separation by solvent extraction using alkyl diamideamine (ADAAM) were carried out, cold tests were performed for the separation of Cs and Sr in a nitric acid solution. Based on the results, hot tests were performed using dissolution solutions of spent fuel at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), and each component contained in the separated solution was analyzed. In the Sr separation by extraction chromatography, most of Sr was separated from other elements using 8 mol/L nitric acid for absorption and 0.02 mol/L nitric acid for elution. In the separation of Cs, more than 99.9% of Cs was selectively co-precipitated by adding AMP to the HLLW, in which nitric acid concentration was adjusted to 3.1 mol/L. In solvent extraction of Am by ADAAM, 81.4% of Am-241 was recovered by a single stage batch experiment. Since Sr, Cs, and Am were properly separated and recovered from HLLW, the effectiveness of the present separation method was successfully demonstrated.
Takahashi, Tone; Mochimaru, Takanori*; Koizumi, Mitsuo; Yoshimi, Yuki*; Yamanishi, Hirokuni*; Wakabayashi, Genichiro*; Ito, Fumiaki*
JAEA-Review 2025-039, 34 Pages, 2025/11
To prevent acts of terrorism involving nuclear or radioactive materials at major public events, it is required to have surveillance technologies that either prevent these materials from being brought in or detect quickly if somebody brings them in secretly. Setting radiation gate monitors to survey pedestrians and vehicles is one of the effective methods. However, considering the possibility of individuals bypassing these monitors, complementary technologies are needed to continuously survey areas inside the gates. To survey extensive areas, radiation mapping is effective. By using multiple detectors and aggregating the data, the survey becomes much more efficient. We have developed mobile detectors capable of simultaneously measuring location data and radiation levels outdoors, with the ability to aggregate measurement results via a network and immediately visualize them on a map. For indoor environments, we have developed a technology that integrates radiation measurement results with environmental mapping created using SLAM (Simultaneous Localization and Mapping) to produce 3D maps of the surveyed areas. Additionally, we have been working on the development of a source search technology using a fast neutron detector to quickly detect neutron sources, including nuclear materials. In this report, we describe a concept of the wide area survey system and report technology development results so far.
Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*
JAEA-Review 2025-036, 88 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2023, this report summarizes the research results of the "Development of inspection technology for pipes in high background radiation environments" conducted in FY2023. The following two studies are being conducted with the aim of comprehensively developing technologies to address the three needs indicated in the hearing with TEPCO regarding observation of the inside of piping: (1) Hydrogen content, (2) Presence of precipitates, (3) Presence or absence of
/
radiation emitting nuclides. First, by downsizing existing nondestructive inspection equipment and developing a dedicated radiation detector capable of nondestructively imaging the inside of piping, we aim to obtain information on the inside of piping by nondestructive inspection using lasers, etc., and to clarify the presence or absence of
-nuclides in piping and the internal conditions of piping, etc. In addition, we will develop equipment to visualize
-nuclides and discriminate
-nuclides in high dose rate environments, as well as technology to investigate the contents of the piping. Deployment of the developed technology is expected to be put into practical use by TEPCO and private companies.
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2025-028, 66 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2023, this report summarizes the research results of the "Development of a prototype shielding-free radiation-resistant diamond neutron measurement system" conducted in FY2023. The present study aims to develop a prototype of a shielding-free neutron measurement system for 1F. The system consists of diamond neutron detectors and radiation-resistant silicon integrated circuits, and has radiation resistance of more than 10 MGy and 4 MGy, respectively, at the component level in terms of integrated dose, and has a track record of stable operation under
-ray dose rate environment of 1.5 kGy/h. Future applications are expected to include neutron detectors for debris investigation, criticality proximity monitoring monitors, and neutron detectors for dry tube investigation in pressure vessels. In this development, a prototype consisting of 100 diamond detector elements of 5 mm square will be developed to obtain system construction technology and to evaluate system performance. In addition, a subcriticality evaluation method will be developed. This development will lead to the completion of system development, development of the actual system in collaboration with the manufacturer, and introduction of the system into 1F decommissioning project.
Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*
JAEA-Review 2025-023, 63 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2023. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition" with the goal of simple real-time 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings. In this research, Gifu Univ. and National Institute of Technology, Fukushima College have developed an embedded system with camera shooting function, camera analysis function, and wireless communication function, in order to realize real-time 3D positioning based on the analysis of camera images by using these multiple devices. The Univ. of Tokyo and LocationMind Inc. will apply UWB real-time positioning technology to the inside of nuclear reactor buildings and attempt to develop technology to improve stability. Nagoya Univ. will be in charge of verifying wireless UWB stability from the hardware side by using electromagnetic wave absorbing materials. The radiation resistance evaluation will be conducted in cooperation with the JAEA and National Institute of Technology, Fukushima College.
Chaerun, R. I.; Sato, Junya; Hiraki, Yoshihisa; Yoshida, Yukihiko; Sato, Tsutomu*; Osugi, Takeshi
Construction and Building Materials, 500, p.144270_1 - 144270_10, 2025/11
Alkali-activated materials (AAMs), particularly those derived from metakaolin, have gained significant attention as sustainable binders for hazardous waste immobilisation, owing to their dense microstructure and chemical durability. Their amorphous aluminosilicate framework enables effective encapsulation of hazardous materials and reduces environmental risks. However, maintaining the stability of this amorphous network is challenging, particularly when sodium (Na
)-rich precursors are used, as excess Na
) promotes crystallisation and compromises matrix integrity. This study systematically investigates the influence of Na
) concentration on the structural stability of metakaolin-based AAMs activated primarily with potassium (K
)). The objective is to identify the threshold Na incorporation level that preserves the amorphous structure and maintains chemical stability. Transmission electron microscopy (TEM), Raman spectroscopy, and thermodynamic modelling were employed to examine the structural evolution of K-AAMs across a range of Na:K molar ratios. The results reveal that higher Na:K ratios induce nanopore formation and early crystallisation of Na-rich zeolitic phases, which can reduce matrix stability. In contrast, an optimal Na:K ratio was identified that maintains the amorphous network and preserves the aluminosilicate framework. These findings provide valuable insights into optimising K-AAMs for advanced, durable waste encapsulation technologies.
Shinohara, Yuya*; Iwashita, Takuya*; Nakanishi, Masahiro*; Liu, Y.*; Cooper, V. R.*; Kofu, Maiko*; Nirei, Masami; Dmowski, W.*; Hickner, M. A.*; Egami, Takeshi*
Journal of Physical Chemistry B, 129(47), p.12330 - 12337, 2025/11
Ouchi, Takuya; Nagata, Hiroshi; Shinoda, Yuya; Yoshida, Hayato; Inoue, Shuichi; Chinone, Marina; Abe, Kazuyuki; Ide, Hiroshi; Watahiki, Shunsuke
JAEA-Technology 2025-006, 25 Pages, 2025/10
In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. Therefore, at the Oarai Nuclear Engineering Institute, in order to contribute to the study of methods for evaluating radioactivity concentrations of the radioactive wastes from nuclear research facilities, samples were taken from radioactive waste that are expected to be buried in the future and radiochemical analysis is used to obtain data on the radioactivity concentration of each nuclide contained in the radioactive waste. This report presents the concept of selecting sample collection targets and summarizes the sampling of radioactive materials conducted at the JMTR reactor facility in fiscal years 2023 and 2024 to obtain data on radioactivity concentrations.
Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*
JAEA-Review 2025-022, 51 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2023. The present study aims to develop a radiation-hardened optoelectronic processor with 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor with 4 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance, and a radiation-hardened power supply unit with 1 MGy TID tolerance. Up to now, we have successfully developed a radiation-hardened optoelectronic processor with 10 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance. Moreover, Japanese research group will support radiation-hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team. Finally, we will provide our radiation-hardened robot system which can identify the intensity and type of radiation.
-contamination visualization (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development ProjectCollaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2025-021, 63 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for
-contamination visualization" conducted in FY2023. The present study aims to develop hand-foot-monitors for
-contamination visualization and cloth monitors for
/
-contamination visualization consisting of a portable phoswich detector. ZnS(Ag) thick films by AD method and rare earth complexes have been studied for development of
-ray scintillator materials. The scintillator properties of the newly prepared ZnS(Ag) thick films were improved from those prepared in 2022. A rare earth complex shows strong emission intensity under
-ray irradiation, which was 12.5 times higher than that of a commercially available plastic scintillator (Saint-Gobain, BC400). By optimizing the manufacturing process conditions (molding die, sintering conditions, cutting process, annealing conditions, grinding/polishing processes) for La-GPS polycrystalline thin plates, the preparing process for 50 mm square La-GPS was established. The prepared La-GPS provided excellent performance for
-ray scintillators. The cloth monitors for
/
-contamination visualization were also improved for the reflection of the actual situation. Furthermore, the basic performance of the prototype cloth monitors was evaluated, and alpha-ray energy and position distribution information were obtained. In an evaluation test of the phoswich detector, a precise discrimination between
- and
-rays was achieved.
Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2025-020, 74 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray" conducted in FY2023. We realized an electron track detecting Compton camera (ETCC) that can measure gamma-ray images (linear images) with the bijective projection. In the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" (hereinafter referred to as the previous project) adopted in FY2018, the 1 km square area including the reactor buildings was imaged at once. In FY2021, 3-D dosimetry in the reactor building of the Institute for Integrated Radiation and Nuclear Science was carried out, and 3-D imaging of gamma-rays was successfully obtained. This project will build on the results of the previous project to develop a practical 3-D contaminant dispersion detection and prediction system for sub-mSv/h environments. In addition, a 3-D radiographic Cs distribution measurement method inside the reactor building using highly penetrating
Cs gamma-rays will be developed. In FY2023, we fabricated a lightweight and highly effective shielding specifically for the TPC of ETCC based on simulations. In addition, by conducting calibration experiments at the FRS facility, we were also able to repair bugs in the signal processing circuit. Those meticulous advance preparations enabled us to successfully conduct a 3-D experiment within 1F in March 2024.
CPham, V. H.; Kurata, Masaki; Nagae, Yuji; Ishibashi, Ryo*; Sasaki, Masana*
Corrosion Science, 255, p.113098_1 - 113098_9, 2025/10
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)