Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
underwater radiation monitoring detectorJi, W.*; Lee, E.*; Ji, Y.-Y.*; Ochi, Kotaro; Yoshimura, Kazuya; Funaki, Hironori; Sanada, Yukihisa
Nuclear Engineering and Technology, 58(2), p.103933_1 - 103933_6, 2026/02
We aimed to validate the performance of an in situ underwater radiation detector, MARK-U1 (Monitoring of Ambient Radiation of KAERI - Underwater), was used to estimate
Cs activity concentration in river and reservoir sediment at predicted sites of contamination. Additionally, underwater core samples were collected to measure the radioactivity using a high-purity germanium (HPGe) detector. To estimate radioactivity, a conversion factor was derived by comparing the measured spectrum and
Cs activity in the sample. A Monte Carlo N-Particle (MCNP) simulation was conducted to determine the effective source geometry for in situ measurement. The simulation results correlated well with the on-site MARK-U1 monitoring results, with a deviation of 31.62%. These findings validate the performance of the in situ detector. This device can therefore be used to estimate
Cs activity concentration in the underwater sediment via on-site monitoring, without requiring sample collection.
Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, R.*; Su, Y. H.; Ao, N.*; Li, Z. W.*; Shinohara, Takenao; Shobu, Takahisa; Wu, S. C.*
International Journal of Fatigue, 202, p.109233_1 - 109233_16, 2026/01
Miyahara, Shinya*; Koie, Ryusuke*; Uno, Masayoshi*; Kawaguchi, Munemichi*; Sato, Rika; Seino, Hiroshi
Nuclear Engineering and Design, 446(Part A), p.114523_1 - 114523_14, 2026/01
Ji, Y.-Y.*; Joung, S.*; Ji, W.*; Ochi, Kotaro; Sasaki, Miyuki; Sanada, Yukihisa
Journal of Radiological Protection, 45(4), p.042501_1 - 042501_11, 2025/12
This study reports the development and field validation of KAERI's UAV-based gamma-ray spectrometry system equipped with LaBr
(Ce) detectors. Joint surveys with JAEA near Fukushima Daiichi Nuclear Power Plant (FDNPP) showed reliable dose rate estimation after applying altitude based attenuation correction, through discrepancies occurred in sloped terrain. Incorporating terrain data is recommended to enhance accuracy for emergency response applications.
Hotoku, Shinobu; Ban, Yasutoshi; Konda, Miki; Kitatsuji, Yoshihiro
JAEA-Technology 2025-009, 33 Pages, 2025/11
High-level liquid waste (HLLW) produced from reprocessing of spent nuclear fuels contains heat generating nuclides such as Sr-90, Y-90, Cs-137, Ba-137m, and Am-241. Separation and recovery of these nuclides lead to reduce the volume and toxicity of high-level waste. Furthermore, the recovered nuclides and elements could be utilized as resources after purification. In this test, Sr separation by extraction chromatography using Sr resin and Pb resin, Cs separation by co-precipitation using ammonium phosphomolybdate (AMP), and Am separation by solvent extraction using alkyl diamideamine (ADAAM) were carried out, cold tests were performed for the separation of Cs and Sr in a nitric acid solution. Based on the results, hot tests were performed using dissolution solutions of spent fuel at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), and each component contained in the separated solution was analyzed. In the Sr separation by extraction chromatography, most of Sr was separated from other elements using 8 mol/L nitric acid for absorption and 0.02 mol/L nitric acid for elution. In the separation of Cs, more than 99.9% of Cs was selectively co-precipitated by adding AMP to the HLLW, in which nitric acid concentration was adjusted to 3.1 mol/L. In solvent extraction of Am by ADAAM, 81.4% of Am-241 was recovered by a single stage batch experiment. Since Sr, Cs, and Am were properly separated and recovered from HLLW, the effectiveness of the present separation method was successfully demonstrated.
Takahashi, Tone; Mochimaru, Takanori*; Koizumi, Mitsuo; Yoshimi, Yuki*; Yamanishi, Hirokuni*; Wakabayashi, Genichiro*; Ito, Fumiaki*
JAEA-Review 2025-039, 34 Pages, 2025/11
To prevent acts of terrorism involving nuclear or radioactive materials at major public events, it is required to have surveillance technologies that either prevent these materials from being brought in or detect quickly if somebody brings them in secretly. Setting radiation gate monitors to survey pedestrians and vehicles is one of the effective methods. However, considering the possibility of individuals bypassing these monitors, complementary technologies are needed to continuously survey areas inside the gates. To survey extensive areas, radiation mapping is effective. By using multiple detectors and aggregating the data, the survey becomes much more efficient. We have developed mobile detectors capable of simultaneously measuring location data and radiation levels outdoors, with the ability to aggregate measurement results via a network and immediately visualize them on a map. For indoor environments, we have developed a technology that integrates radiation measurement results with environmental mapping created using SLAM (Simultaneous Localization and Mapping) to produce 3D maps of the surveyed areas. Additionally, we have been working on the development of a source search technology using a fast neutron detector to quickly detect neutron sources, including nuclear materials. In this report, we describe a concept of the wide area survey system and report technology development results so far.
Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*
JAEA-Review 2025-036, 88 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2023, this report summarizes the research results of the "Development of inspection technology for pipes in high background radiation environments" conducted in FY2023. The following two studies are being conducted with the aim of comprehensively developing technologies to address the three needs indicated in the hearing with TEPCO regarding observation of the inside of piping: (1) Hydrogen content, (2) Presence of precipitates, (3) Presence or absence of
/
radiation emitting nuclides. First, by downsizing existing nondestructive inspection equipment and developing a dedicated radiation detector capable of nondestructively imaging the inside of piping, we aim to obtain information on the inside of piping by nondestructive inspection using lasers, etc., and to clarify the presence or absence of
-nuclides in piping and the internal conditions of piping, etc. In addition, we will develop equipment to visualize
-nuclides and discriminate
-nuclides in high dose rate environments, as well as technology to investigate the contents of the piping. Deployment of the developed technology is expected to be put into practical use by TEPCO and private companies.
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2025-028, 66 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2023, this report summarizes the research results of the "Development of a prototype shielding-free radiation-resistant diamond neutron measurement system" conducted in FY2023. The present study aims to develop a prototype of a shielding-free neutron measurement system for 1F. The system consists of diamond neutron detectors and radiation-resistant silicon integrated circuits, and has radiation resistance of more than 10 MGy and 4 MGy, respectively, at the component level in terms of integrated dose, and has a track record of stable operation under
-ray dose rate environment of 1.5 kGy/h. Future applications are expected to include neutron detectors for debris investigation, criticality proximity monitoring monitors, and neutron detectors for dry tube investigation in pressure vessels. In this development, a prototype consisting of 100 diamond detector elements of 5 mm square will be developed to obtain system construction technology and to evaluate system performance. In addition, a subcriticality evaluation method will be developed. This development will lead to the completion of system development, development of the actual system in collaboration with the manufacturer, and introduction of the system into 1F decommissioning project.
Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*
JAEA-Review 2025-023, 63 Pages, 2025/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2023. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition" with the goal of simple real-time 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings. In this research, Gifu Univ. and National Institute of Technology, Fukushima College have developed an embedded system with camera shooting function, camera analysis function, and wireless communication function, in order to realize real-time 3D positioning based on the analysis of camera images by using these multiple devices. The Univ. of Tokyo and LocationMind Inc. will apply UWB real-time positioning technology to the inside of nuclear reactor buildings and attempt to develop technology to improve stability. Nagoya Univ. will be in charge of verifying wireless UWB stability from the hardware side by using electromagnetic wave absorbing materials. The radiation resistance evaluation will be conducted in cooperation with the JAEA and National Institute of Technology, Fukushima College.
Ouchi, Takuya; Nagata, Hiroshi; Shinoda, Yuya; Yoshida, Hayato; Inoue, Shuichi; Chinone, Marina; Abe, Kazuyuki; Ide, Hiroshi; Watahiki, Shunsuke
JAEA-Technology 2025-006, 25 Pages, 2025/10
In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. Therefore, at the Oarai Nuclear Engineering Institute, in order to contribute to the study of methods for evaluating radioactivity concentrations of the radioactive wastes from nuclear research facilities, samples were taken from radioactive waste that are expected to be buried in the future and radiochemical analysis is used to obtain data on the radioactivity concentration of each nuclide contained in the radioactive waste. This report presents the concept of selecting sample collection targets and summarizes the sampling of radioactive materials conducted at the JMTR reactor facility in fiscal years 2023 and 2024 to obtain data on radioactivity concentrations.
Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*
JAEA-Review 2025-022, 51 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2023. The present study aims to develop a radiation-hardened optoelectronic processor with 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor with 4 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance, and a radiation-hardened power supply unit with 1 MGy TID tolerance. Up to now, we have successfully developed a radiation-hardened optoelectronic processor with 10 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance. Moreover, Japanese research group will support radiation-hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team. Finally, we will provide our radiation-hardened robot system which can identify the intensity and type of radiation.
-contamination visualization (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development ProjectCollaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2025-021, 63 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for
-contamination visualization" conducted in FY2023. The present study aims to develop hand-foot-monitors for
-contamination visualization and cloth monitors for
/
-contamination visualization consisting of a portable phoswich detector. ZnS(Ag) thick films by AD method and rare earth complexes have been studied for development of
-ray scintillator materials. The scintillator properties of the newly prepared ZnS(Ag) thick films were improved from those prepared in 2022. A rare earth complex shows strong emission intensity under
-ray irradiation, which was 12.5 times higher than that of a commercially available plastic scintillator (Saint-Gobain, BC400). By optimizing the manufacturing process conditions (molding die, sintering conditions, cutting process, annealing conditions, grinding/polishing processes) for La-GPS polycrystalline thin plates, the preparing process for 50 mm square La-GPS was established. The prepared La-GPS provided excellent performance for
-ray scintillators. The cloth monitors for
/
-contamination visualization were also improved for the reflection of the actual situation. Furthermore, the basic performance of the prototype cloth monitors was evaluated, and alpha-ray energy and position distribution information were obtained. In an evaluation test of the phoswich detector, a precise discrimination between
- and
-rays was achieved.
Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2025-020, 74 Pages, 2025/10
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to “the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray" conducted in FY2023. We realized an electron track detecting Compton camera (ETCC) that can measure gamma-ray images (linear images) with the bijective projection. In the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" (hereinafter referred to as the previous project) adopted in FY2018, the 1 km square area including the reactor buildings was imaged at once. In FY2021, 3-D dosimetry in the reactor building of the Institute for Integrated Radiation and Nuclear Science was carried out, and 3-D imaging of gamma-rays was successfully obtained. This project will build on the results of the previous project to develop a practical 3-D contaminant dispersion detection and prediction system for sub-mSv/h environments. In addition, a 3-D radiographic Cs distribution measurement method inside the reactor building using highly penetrating
Cs gamma-rays will be developed. In FY2023, we fabricated a lightweight and highly effective shielding specifically for the TPC of ETCC based on simulations. In addition, by conducting calibration experiments at the FRS facility, we were also able to repair bugs in the signal processing circuit. Those meticulous advance preparations enabled us to successfully conduct a 3-D experiment within 1F in March 2024.
CPham, V. H.; Kurata, Masaki; Nagae, Yuji; Ishibashi, Ryo*; Sasaki, Masana*
Corrosion Science, 255, p.113098_1 - 113098_9, 2025/10
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)Nakayama, Masashi; Ishii, Eiichi; Hayano, Akira; Aoyagi, Kazuhei; Murakami, Hiroaki; Ono, Hirokazu; Takeda, Masaki; Mochizuki, Akihito; Ozaki, Yusuke; Kimura, Shun; et al.
JAEA-Review 2025-027, 80 Pages, 2025/09
The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2025, we continue R&D on "Study on near-field system performance in geological environment" and "Demonstration of repository design options". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. As for "Demonstration of repository design options", the investigation, design, and evaluation techniques are to be systemized at various scales, from the tunnel to the pit, by means of an organized set of evaluation methodologies for confinement performance at these respective scales. Preliminary borehole investigations will be conducted within a 500 m gallery, with the objectives of obtaining rock strength and rock permeability data, as well as surveying the extent of the excavation damaged zone surrounding the test tunnel via tomographic analysis. A planning study for the in-situ construction test will be conducted to investigate the construction of backfill material and watertight plugs. The volume of water inflow associated with the excavation of the 500 m gallery will be observed, and its magnitude will be compared with the range of water inflow predicted in the analysis. The test plan to determine the extent of the excavation damaged zone around the pit, which is planned to be constructed in the 500 m gallery, will be studied to determine the in-situ excavation damaged zone. In addition, the investigation and evaluation methods for the amount of water inflow from fractures and the extent of the excavation damaged zone around the pit will be organized. Concerning the construction and maintenance of the subsurface facilities, excavation of the West Access Shaft and the 500 m gallery will continue. It is anticipated that the construction of the facilities will be completed by the end of the fiscal year 2025. In addition, we continue R&D on the following three tasks in the Horonobe International Project; Task A: Solute transport experiment with model testing, Task B: Systematic integration of repository technology options, and Task C: Full-scale engineered barrier system dismantling experiment.
Engineering Services Department, Nuclear Science Research Institute
JAEA-Review 2025-018, 83 Pages, 2025/09
The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel material usage facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipment. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2023. We hope that this report may help to future work.
Yamaguchi, Yuji; Kondo, Yasuhiro; Meigo, Shinichiro; Shinozaki, Shinichi; Takayanagi, Tomohiro; Fujimori, Hiroshi*; Kawamura, Naritoshi*
Journal of Physics; Conference Series, 3094(1), p.012023_1 - 012023_5, 2025/09
The 3-GeV proton beam from the rapid cycling synchrotron (RCS) of J-PARC is transported to the spallation neutron source at Materials and Life Science Experimental Facility (MLF) by a 3-GeV RCS to Neutron facility Beam Transport (3NBT) line. Recently, the first design idea of a new proton beam transport line has been proposed for a future target station of the MLF (TS2). In the present study, proton beam transport is simulated near the TS2 target where a bending magnet and a solenoid are located for muon beam transport. The purposes are to clarify the magnetic field effects on the proton beam by the magnets and to present a method to correct each effect. Orbit deviation by the bending magnet and vertical size expansion due to profile rotation by the solenoid can be corrected by installing additional bending magnets and a solenoid with reversal magnetic field, respectively. The correction method is expected to be effective and also needs to be studied further for detail design.
Watanabe, Taku*; Maejima, Yui*; Ueda, Yuki; Motokawa, Ryuhei; Takabatake, Ai*; Takeda, Shinichi*; Fudoji, Hiroshi*; Kishikawa, Keiki*; Koori, Michinari*
Langmuir, 41(34), p.22762 - 22773, 2025/09
Times Cited Count:0 Percentile:0.00The assembled structures of melanin particles, i.e., colloidal particles coated with a melanin-like polydopamine (PDA) layer, create vivid structural colors. While the thickness of the PDA layer influences the particle arrangement and optical properties, the underlying mechanism has remained controversial. We demonstrate that the water swelling characteristics of PDA are crucial factors governing the dispersion and aggregation of these particles in solution. Detailed comparisons between dry and wet conditions revealed that the PDA layer readily absorbs water molecules, which leads to significant swelling in the thicker layers. The swelling of the PDA layers determined whether the particles remained dispersed or partially aggregated in the water, ultimately controlling the particle arrangement in the dry state once the water evaporated. These findings provide insights into the self-assembly of colloidal particles and offer a strategy for tuning the periodic particle order. This feature is pivotal for various applications in optical and sensing technologies.
Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi
Nuclear Engineering and Design, 441, p.114160_1 - 114160_10, 2025/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This paper evaluates the applicability of equivalent linear analysis of reinforced concrete model, which uses frequency-independent complex damping with a small computational load, to the seismic design of nuclear power plant reactor buildings. To this end, a three-dimensional finite element method analysis of the soil-structure interaction focusing on nonlinear and equivalent linear seismic behavior of the building embedded in an ideally uniform soil condition was performed for the Kashiwazaki-Kariwa Nuclear Power Plant Unit 7 reactor building. The equivalent linear analysis results correlated well with the nonlinear analysis results of the shear strain, acceleration, displacement, and acceleration response spectrum, demonstrating the effectiveness of the equivalent linear analysis method. Moreover, the equivalent linear analysis results were more conservative than those of nonlinear analysis using the material constitutive law in evaluating the shear strain of the external wall of the reactor building. From this result, equivalent linear analysis method tended to obtain a lower building stiffness than nonlinear analysis under the analysis conditions used in this paper.
Aihara, Haruka; Hinai, Hiroshi; Shibata, Atsuhiro; Tomita, Sayuri*; Koma, Yoshikazu
Progress in Nuclear Science and Technology (Internet), 8, p.324 - 328, 2025/09
Pu and Am contained in the contaminated water at Fukushima Daiichi Nuclear Power Station is concerned to contaminate inside the buildings concrete. To understand or estimate the state of contamination, investigation on contamination mechanisms have become quite important. Therefore, the distribution ratio of Pu and Am to cement paste and aggregates was obtained by experiments. Cement paste and aggregate were immersed in Pu and Am solution to obtain distribution ratio. Those of Pu and Am to cement paste was high values, suggesting that they have sorbed and accumulated in the building concrete.