Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 5532

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Validation of ${it in situ}$ underwater radiation monitoring detector

Ji, W.*; Lee, E.*; Ji, Y.-Y.*; Ochi, Kotaro; Yoshimura, Kazuya; Funaki, Hironori; Sanada, Yukihisa

Nuclear Engineering and Technology, 58(2), p.103933_1 - 103933_6, 2026/02

We aimed to validate the performance of an in situ underwater radiation detector, MARK-U1 (Monitoring of Ambient Radiation of KAERI - Underwater), was used to estimate $$^{137}$$Cs activity concentration in river and reservoir sediment at predicted sites of contamination. Additionally, underwater core samples were collected to measure the radioactivity using a high-purity germanium (HPGe) detector. To estimate radioactivity, a conversion factor was derived by comparing the measured spectrum and $$^{137}$$Cs activity in the sample. A Monte Carlo N-Particle (MCNP) simulation was conducted to determine the effective source geometry for in situ measurement. The simulation results correlated well with the on-site MARK-U1 monitoring results, with a deviation of 31.62%. These findings validate the performance of the in situ detector. This device can therefore be used to estimate $$^{137}$$Cs activity concentration in the underwater sediment via on-site monitoring, without requiring sample collection.

Journal Articles

Residual stress relief effect in gradient structural steel and remaining life evaluation under stochastic fatigue loads

Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, R.*; Su, Y. H.; Ao, N.*; Li, Z. W.*; Shinohara, Takenao; Shobu, Takahisa; Wu, S. C.*

International Journal of Fatigue, 202, p.109233_1 - 109233_16, 2026/01

Journal Articles

Performance of UAV-based airborne gamma-ray spectrometry for wide-area radiation monitoring of contaminated sites

Ji, Y.-Y.*; Joung, S.*; Ji, W.*; Ochi, Kotaro; Sasaki, Miyuki; Sanada, Yukihisa

Journal of Radiological Protection, 45(4), p.042501_1 - 042501_11, 2025/12

This study reports the development and field validation of KAERI's UAV-based gamma-ray spectrometry system equipped with LaBr$$_{3}$$(Ce) detectors. Joint surveys with JAEA near FDNPP showed reliable dose rate estimation after applying altitude based attenuation correction, through discrepancies occurred in sloped terrain. Incorporating terrain data is recommended to enhance accuracy for emergency response applications.

JAEA Reports

Sampling of radioactive materials remaining in JMTR Reactor Facility

Ouchi, Takuya; Nagata, Hiroshi; Shinoda, Yuya; Yoshida, Hayato; Inoue, Shuichi; Chinone, Marina; Abe, Kazuyuki; Ide, Hiroshi; Watahiki, Shunsuke

JAEA-Technology 2025-006, 25 Pages, 2025/10

In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. Therefore, at the Oarai Nuclear Engineering Institute, in order to contribute to the study of methods for evaluating radioactivity concentrations of the radioactive wastes from nuclear research facilities, samples were taken from radioactive waste that are expected to be buried in the future and radiochemical analysis is used to obtain data on the radioactivity concentration of each nuclide contained in the radioactive waste. This report presents the concept of selecting sample collection targets and summarizes the sampling of radioactive materials conducted at the JMTR reactor facility in fiscal years 2023 and 2024 to obtain data on radioactivity concentrations.

JAEA Reports

Embedded system using a radiation-hardened processor (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2025-022, 51 Pages, 2025/10

JAEA-Review-2025-022.pdf:3.05MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2023. The present study aims to develop a radiation-hardened optoelectronic processor with 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor with 4 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance, and a radiation-hardened power supply unit with 1 MGy TID tolerance. Up to now, we have successfully developed a radiation-hardened optoelectronic processor with 10 MGy TID tolerance, a radiation-hardened memory with 4 MGy TID tolerance. Moreover, Japanese research group will support radiation-hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team. Finally, we will provide our radiation-hardened robot system which can identify the intensity and type of radiation.

JAEA Reports

Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2025-021, 63 Pages, 2025/10

JAEA-Review-2025-021.pdf:5.71MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization" conducted in FY2023. The present study aims to develop hand-foot-monitors for $$alpha$$-contamination visualization and cloth monitors for $$alpha$$/$$beta$$-contamination visualization consisting of a portable phoswich detector. ZnS(Ag) thick films by AD method and rare earth complexes have been studied for development of $$alpha$$-ray scintillator materials. The scintillator properties of the newly prepared ZnS(Ag) thick films were improved from those prepared in 2022. A rare earth complex shows strong emission intensity under $$alpha$$-ray irradiation, which was 12.5 times higher than that of a commercially available plastic scintillator (Saint-Gobain, BC400). By optimizing the manufacturing process conditions (molding die, sintering conditions, cutting process, annealing conditions, grinding/polishing processes) for La-GPS polycrystalline thin plates, the preparing process for 50 mm square La-GPS was established. The prepared La-GPS provided excellent performance for $$beta$$-ray scintillators. The cloth monitors for $$alpha$$/$$beta$$-contamination visualization were also improved for the reflection of the actual situation. Furthermore, the basic performance of the prototype cloth monitors was evaluated, and alpha-ray energy and position distribution information were obtained. In an evaluation test of the phoswich detector, a precise discrimination between $$alpha$$- and $$beta$$-rays was achieved.

JAEA Reports

Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2025-020, 74 Pages, 2025/10

JAEA-Review-2025-020.pdf:5.85MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to “the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Establishment of 3-D dose dispersion forecasting method and development of in-structure survey using the transparency difference of each line gamma-ray" conducted in FY2023. We realized an electron track detecting Compton camera (ETCC) that can measure gamma-ray images (linear images) with the bijective projection. In the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" (hereinafter referred to as the previous project) adopted in FY2018, the 1 km square area including the reactor buildings was imaged at once. In FY2021, 3-D dosimetry in the reactor building of the Institute for Integrated Radiation and Nuclear Science was carried out, and 3-D imaging of gamma-rays was successfully obtained. This project will build on the results of the previous project to develop a practical 3-D contaminant dispersion detection and prediction system for sub-mSv/h environments. In addition, a 3-D radiographic Cs distribution measurement method inside the reactor building using highly penetrating $$^{134}$$Cs gamma-rays will be developed. In FY2023, we fabricated a lightweight and highly effective shielding specifically for the TPC of ETCC based on simulations. In addition, by conducting calibration experiments at the FRS facility, we were also able to repair bugs in the signal processing circuit. Those meticulous advance preparations enabled us to successfully conduct a 3-D experiment within 1F in March 2024.

Journal Articles

Influence of steam flow rate on oxidation kinetics of silicon carbide at 1400-1600 $$^{circ}$$C

Pham, V. H.; Kurata, Masaki; Nagae, Yuji; Ishibashi, Ryo*; Sasaki, Masana*

Corrosion Science, 255, p.113098_1 - 113098_9, 2025/10

 Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)

JAEA Reports

Horonobe Underground Research Laboratory Project Investigation Program for the Fiscal Year 2025

Nakayama, Masashi; Ishii, Eiichi; Hayano, Akira; Aoyagi, Kazuhei; Murakami, Hiroaki; Ono, Hirokazu; Takeda, Masaki; Mochizuki, Akihito; Ozaki, Yusuke; Kimura, Shun; et al.

JAEA-Review 2025-027, 80 Pages, 2025/09

JAEA-Review-2025-027.pdf:6.22MB

The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2025, we continue R&D on "Study on near-field system performance in geological environment" and "Demonstration of repository design options". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. As for "Demonstration of repository design options", the investigation, design, and evaluation techniques are to be systemized at various scales, from the tunnel to the pit, by means of an organized set of evaluation methodologies for confinement performance at these respective scales. Preliminary borehole investigations will be conducted within a 500 m gallery, with the objectives of obtaining rock strength and rock permeability data, as well as surveying the extent of the excavation damaged zone surrounding the test tunnel via tomographic analysis. A planning study for the in-situ construction test will be conducted to investigate the construction of backfill material and watertight plugs. The volume of water inflow associated with the excavation of the 500 m gallery will be observed, and its magnitude will be compared with the range of water inflow predicted in the analysis. The test plan to determine the extent of the excavation damaged zone around the pit, which is planned to be constructed in the 500 m gallery, will be studied to determine the in-situ excavation damaged zone. In addition, the investigation and evaluation methods for the amount of water inflow from fractures and the extent of the excavation damaged zone around the pit will be organized. Concerning the construction and maintenance of the subsurface facilities, excavation of the West Access Shaft and the 500 m gallery will continue. It is anticipated that the construction of the facilities will be completed by the end of the fiscal year 2025. In addition, we continue R&D on the following three tasks in the Horonobe International Project; Task A: Solute transport experiment with model testing, Task B: Systematic integration of repository technology options, and Task C: Full-scale engineered barrier system dismantling experiment.

JAEA Reports

Annual report of Engineering Services Department on JFY2023

Engineering Services Department, Nuclear Science Research Institute

JAEA-Review 2025-018, 83 Pages, 2025/09

JAEA-Review-2025-018.pdf:4.99MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel material usage facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipment. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2023. We hope that this report may help to future work.

Journal Articles

Simulations of magnetic field effects on 3-GeV proton beam brought by magnets for muon beam in future proton beam transport line of J-PARC

Yamaguchi, Yuji; Kondo, Yasuhiro; Meigo, Shinichiro; Shinozaki, Shinichi; Takayanagi, Tomohiro; Fujimori, Hiroshi*; Kawamura, Naritoshi*

Journal of Physics; Conference Series, 3094(1), p.012023_1 - 012023_5, 2025/09

The 3-GeV proton beam from the rapid cycling synchrotron (RCS) of J-PARC is transported to the spallation neutron source at Materials and Life Science Experimental Facility (MLF) by a 3-GeV RCS to Neutron facility Beam Transport (3NBT) line. Recently, the first design idea of a new proton beam transport line has been proposed for a future target station of the MLF (TS2). In the present study, proton beam transport is simulated near the TS2 target where a bending magnet and a solenoid are located for muon beam transport. The purposes are to clarify the magnetic field effects on the proton beam by the magnets and to present a method to correct each effect. Orbit deviation by the bending magnet and vertical size expansion due to profile rotation by the solenoid can be corrected by installing additional bending magnets and a solenoid with reversal magnetic field, respectively. The correction method is expected to be effective and also needs to be studied further for detail design.

Journal Articles

Particle arrangements and optical changes induced by the water swelling of melanin-like polydopamine layers

Watanabe, Taku*; Maejima, Yui*; Ueda, Yuki; Motokawa, Ryuhei; Takabatake, Ai*; Takeda, Shinichi*; Fudoji, Hiroshi*; Kishikawa, Keiki*; Koori, Michinari*

Langmuir, 41(34), p.22762 - 22773, 2025/09

 Times Cited Count:0

The assembled structures of melanin particles, i.e., colloidal particles coated with a melanin-like polydopamine (PDA) layer, create vivid structural colors. While the thickness of the PDA layer influences the particle arrangement and optical properties, the underlying mechanism has remained controversial. We demonstrate that the water swelling characteristics of PDA are crucial factors governing the dispersion and aggregation of these particles in solution. Detailed comparisons between dry and wet conditions revealed that the PDA layer readily absorbs water molecules, which leads to significant swelling in the thicker layers. The swelling of the PDA layers determined whether the particles remained dispersed or partially aggregated in the water, ultimately controlling the particle arrangement in the dry state once the water evaporated. These findings provide insights into the self-assembly of colloidal particles and offer a strategy for tuning the periodic particle order. This feature is pivotal for various applications in optical and sensing technologies.

Journal Articles

Applicability of equivalent linear three-dimensional FEM analysis of reactor buildings to the seismic response of a soil-structure interaction system

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

Nuclear Engineering and Design, 441, p.114160_1 - 114160_10, 2025/09

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

This paper evaluates the applicability of equivalent linear analysis of reinforced concrete model, which uses frequency-independent complex damping with a small computational load, to the seismic design of nuclear power plant reactor buildings. To this end, a three-dimensional finite element method analysis of the soil-structure interaction focusing on nonlinear and equivalent linear seismic behavior of the building embedded in an ideally uniform soil condition was performed for the Kashiwazaki-Kariwa Nuclear Power Plant Unit 7 reactor building. The equivalent linear analysis results correlated well with the nonlinear analysis results of the shear strain, acceleration, displacement, and acceleration response spectrum, demonstrating the effectiveness of the equivalent linear analysis method. Moreover, the equivalent linear analysis results were more conservative than those of nonlinear analysis using the material constitutive law in evaluating the shear strain of the external wall of the reactor building. From this result, equivalent linear analysis method tended to obtain a lower building stiffness than nonlinear analysis under the analysis conditions used in this paper.

Journal Articles

Development of a prediction model for ambient dose equivalent rate distribution based on ecological half-life profiles using LASSO regression and KURAMA data

Shikaze, Yoshiaki; Saito, Kimiaki; Tanimura, Naoki*; Yoshimura, Kazuya; Liu, X.; Machida, Masahiko

Radiation Protection Dosimetry, 201(15), p.1025 - 1042, 2025/09

 Times Cited Count:0

The two-component model, comprising a fast-decay and a slow-decay component, has been widely used to approximate the decreasing trends of air dose rates in contaminated areas surrounding major nuclear accident sites. However, its adequacy is yet to be thoroughly validated. This study analyzed extensive car-borne survey data collected from 2011 to 2016 after the Fukushima Daiichi Nuclear Power Plant accident using the least absolute shrinkage and selection operator regression with a high-degree-of-freedom model. This analysis aimed to evaluate the adequacy of the two-component model and investigate the profiles of ecological half-lives. Next, future predictions of air dose rate distributions were made using a prediction model formula that incorporated the average ecological half-life profiles calculated for each land-use and initial air dose rate category. Prediction accuracy was verified through comparison with integrated map data, which merge air dose rate datasets obtained using different monitoring methods and represent the most currently reliable source. In this paper, we present the results of the analysis of the above environmental half-life profiles and the evaluation of the predictive model calculations, and discuss the reasons that led to these results.

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2025-011, 74 Pages, 2025/08

JAEA-Review-2025-011.pdf:5.31MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science &Z Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted from FY2021 to FY2023. The present study aims to develop a robot system (CORRASE: Cooperative Operation Robot system for RAdiation Source Exploration), realizing radiation source exploration with wide field of view, rapidity, and low cost. In FY2023, our research efforts focused on verification tests for radiation source exploration by summarizing the results of our previous studies. Polyhedral type gamma-ray directional detectors were fabricated from 8 BGO scintillators and shielding bodies. Radiation source exploration experiments were performed by developing a cooperative operation robot system consisting of 3 multi-legged robots carrying the gamma-ray detectors, IMUs (Inertial Measurement Units), and LiDARs (Light Detection And Ranging). An unknown test environment for the radiation source exploration was constructed by placing obstacles and a 10 MBq $$^{137}$$Cs sealed source as a simulated radioactive contamination source in a room measuring 7.8 $$times$$ 5.3 m$$^{2}$$. The developed system was used to create the environmental map, to formulate the exploration plan, to create the heatmap of the radiation counts, and to image the radiation source from the calculated optimal observation position. The localization of the simulated radioactive contamination source was successfully performed with the cooperation of the 3 robot systems by displaying the image of the radiation source fused on the environmental map. It can be concluded that the initial goal of this study has been successfully achieved by developing the robot system realizing radiation source exploration.

Journal Articles

Preliminary criticality analysis of a partially damaged reactor core under different scenarios

Nguyen, H. H.

Annals of Nuclear Energy, 218, p.111361_1 - 111361_9, 2025/08

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

This study examined the criticality characteristics of a partially damaged reactor model, in which fuels located at the core center melt into fuel debris of varying shapes, while fuels situated at the core edges remain intact. The investigation was conducted using the Serpent code with the JENDL-5 nuclear data library. The results of the calculations indicate that when the volume of fuel debris is small and maintained at a constant level, the shape of the fuel debris does not result in significant alterations in the variation law of k$$_{rm eff}$$ of the system. In contrast, for the scenario in which the volume of the fuel debris is variable, the k$$_{rm eff}$$ variation law can be divided into two groups for the reference case with a system temperature of 300 K and no boron in the water. The first group comprises fuel debris with shapes that are cuboid and cylindrical, while the second group comprises fuel debris with shapes that are spherical, cone-shaped, and truncated cone-shaped.

Journal Articles

Neutronics/thermal-hydraulics coupling simulation using JAMPAN in a single BWR assembly

Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Tada, Kenichi; Kondo, Ryoichi; Nagaya, Yasunobu; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 12(4), p.24-00461_1 - 24-00461_9, 2025/08

JAEA has developed the JAEA Advanced Multi-Physics Analysis platform for Nuclear systems (JAMPAN) to realize high-fidelity neutronics/thermal-hydraulics coupling simulations. We performed a neutronics/thermal-hydraulics coupling simulation for a single BWR fuel assembly in order to confirm that the MVP/JUPITER coupling through JAMPAN is feasible. As a result, we confirmed that the void fraction and the corresponding change in the heat generation distribution are reasonable qualitatively.

Journal Articles

Chemical Kinetic Uncertainty Quantification in Hydrogen Combustion Computational Fluid Dynamics Simulation for ENACCEF2 Experiment

Motegi, Kosuke; Matsumoto, Toshinori; Shiotsu, Hiroyuki

Proceedings of 21st International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-21) (Internet), 10 Pages, 2025/08

Journal Articles

Decontamination effectiveness for wiping vehicle in screening during a nuclear emergency

Hiraoka, Hirokazu; Manabe, Kentaro; Hirouchi, Jun; Takahara, Shogo

Proceedings of Asian Symposium on Risk Assessment and Management 2025 (ASRAM 2025) (Internet), p.487 - 494, 2025/08

Journal Articles

Pressure-induced elongation of hydrogen-oxygen bond in sodium silicate melts

Ohashi, Tomonori*; Sakamaki, Tatsuya*; Funakoshi, Kenichi*; Steinle-Neumann, G.*; Hattori, Takanori; Yuan, L.*; Suzuki, Akio*

Journal of Mineralogical and Petrological Sciences (Internet), 120(1), p.240926a_1 - 240926a_13, 2025/06

 Times Cited Count:0 Percentile:0.00(Mineralogy)

We explore the structures of dry and hydrated (H$$_2$$O and D$$_2$$O) Na$$_6$$Si$$_8$$O$$_{19}$$ melt at 0-6 GPa and 1000-1300 K and glasses recovered from high pressure and temperatures by in-situ neutron and X-ray diffraction. The structures of the melts at 0-10 GPa and 3000 K are also investigated by ab-initio molecular dynamics simulation. In-situ neutron experiments revealed that the D-O distance increases with compression due to the formation of -O-D-O- bridging species, which is reproduced by the molecular dynamics simulations. The pressure-induced -O-D-O- formation reflects a more rigid incorporation of hydrogen, which acts as a mechanism for the experimentally observed higher solubility of water in silicate melts. Together with shrinking modifier domains, this process dominates the compression behavior of hydrous Na$$_6$$Si$$_8$$O$$_{19}$$ melt, whereas the compression of dry Na$$_6$$Si$$_8$$O$$_{19}$$ at 0-10 GPa and 3000 K is governed largely by bending of the Si-O-Si angle. The molecular dynamics simulations on hydrous Na$$_6$$Si$$_8$$O$$_{19}$$ melts further suggest that the sodium ions are scavenged from its network-modifying role via 2($$^{[4]}$$Si-O$$^-$$ + Na$$^+$$) $$rightarrow$$ $$^{[4]}$$Si-(O-$$^{[5]}$$Si-O)$$^{2-}$$ + 2Na$$^+$$ and Si-O$$^-$$ + Na$$^+$$ + Si-OH $$rightarrow$$ Si-(O-H-O-Si)$$^-$$ + Na$$^+$$ with increasing pressure.

5532 (Records 1-20 displayed on this page)