Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 36

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Plan of materials irradiation facility at J-PARC for development of ADS and high-power accelerator facilities

Maekawa, Fujio

JPS Conference Proceedings (Internet), 33, p.011042_1 - 011042_6, 2021/03

Development of beam window (BW) materials is one of crucial issues in development of accelerator driven nuclear transmutation systems (ADS). The BW is exposed to high energy protons and spallation neutrons, and also to corrosive lead-bismuth eutectic (LBE) alloy at high temperature of about 500$$^{circ}$$C. Recently, not only high-power accelerators but also high-power targets are the rate-limiting factor for increasing the power of accelerator facilities in terms of radiation damage and heat removal. To study radiation damage on BW and target materials for high-power accelerator facilities including ADS, we are planning a materials irradiation facility by utilizing the proton beam of 400 MeV and 250 kW provided by the J-PARC's Linac. The target is flowing LBE alloy which is a candidate target and coolant material of ADS. When a steel sample is irradiated in the target for one year, the sample receives radiation damage of about 10 dpa at maximum which is equivalent to the yearly radiation damage of ADS's BW. In the current facility concept, the facility is equipped with a hot-laboratory for efficient post-irradiation examination. The facility will be outlined in this presentation.

Journal Articles

Recent status of the pulsed spallation neutron source at J-PARC

Takada, Hiroshi; Haga, Katsuhiro

JPS Conference Proceedings (Internet), 28, p.081003_1 - 081003_7, 2020/02

At the Japan Proton Accelerator Research Complex (J-PARC), the pulsed spallation neutron source has been in operation with a redesigned mercury target vessel from October 2017 to July 2018, during which the operational beam power was restored to 500 kW and the operation with a 1-MW equivalent beam was demonstrated for one hour. The target vessel includes a gas-micro-bubbles injector and a 2-mm-wide narrow mercury flow channel at the front end as measures to suppress the cavitation damage. After the operating period, it was observed that the cavitation damage at the 3-mm-thick front end of the target vessel could be suppressed less than 17.5 $$mu$$m.

Journal Articles

Experimental evaluation of wall shear stress in a double contraction nozzle using a water mock-up of a liquid Li target for an intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09

 Times Cited Count:1 Percentile:14.17(Nuclear Science & Technology)

Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.

Journal Articles

Conceptual design and verification of long-distance laser-probe system for Li target diagnostics of intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 136(Part A), p.24 - 28, 2018/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the IFMIF-EVEDA project, we designed and constructed the IFMIF-EVEDA Li Test Loop (ELTL), and we performed experiments to validate the stability of the Li target. This project required a diagnostic tool to be developed in order to examine the Li target; as such, we developed a unique laser-based method that we call the laser-probe method; this method combines a high-precision laser distance meter with a statistical data analysis method. Following the successful development of the laser-probe method, we proposes a long-distance-measurement of the laser probe method (long-distance LP method) as a diagnostics tool in off-beam conditions for IFMIF or the relevant neutron sources. In this study, the measurement uncertainty resulting from coherency of the laser in a long-distance-measurement has been verified by using stationary objects and a water jet simulating the liquid Li target.

Journal Articles

Development of a gas-sheet target for a non-destructive profile monitor

Ogiwara, Norio; Hikichi, Yusuke*; Kamiya, Junichiro; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.563 - 567, 2017/12

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

JAEA Reports

Technical design report on J-PARC Transmutation Experimental Facility; ADS Target Test Facility (TEF-T)

Nuclear Transmutation Division, J-PARC Center

JAEA-Technology 2017-003, 539 Pages, 2017/03


JAEA is pursuing R&D on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste based on the "Strategic Energy Plan" issued in April 2014. Construction of Transmutation Experimental Facility is under planning as one of the second phase facilities in the J-PARC program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded subcritical cores, physical properties of the cores are to be studied, and operation experiences are to be acquired. This report summarizes results of technical design for construction of one of two TEF facilities, TEF-T.

Journal Articles

Impact of PHITS spallation models on the neutronics design of an accelerator-driven system

Iwamoto, Hiroki; Nishihara, Kenji; Iwamoto, Yosuke; Hashimoto, Shintaro; Matsuda, Norihiro; Sato, Tatsuhiko; Harada, Masahide; Maekawa, Fujio

Journal of Nuclear Science and Technology, 53(10), p.1585 - 1594, 2016/10

 Times Cited Count:15 Percentile:84.46(Nuclear Science & Technology)

Journal Articles

J-PARC transmutation experimental facility programme

Sasa, Toshinobu; Takei, Hayanori; Saito, Shigeru; Obayashi, Hironari; Nishihara, Kenji; Sugawara, Takanori; Iwamoto, Hiroki; Yamaguchi, Kazushi; Tsujimoto, Kazufumi; Oigawa, Hiroyuki

NEA/CSNI/R(2015)2 (Internet), p.85 - 91, 2015/06

Nuclear transmutation got much interested as an effective option of nuclear waste management. Japan Atomic Energy Agency (JAEA) proposes the transmutation of minor actinides (MA) by accelerator-driven system (ADS) using lead-bismuth alloy (Pb-Bi). To obtain the data for ADS design, JAEA plans to build a Transmutation Experimental Facility (TEF) in the J-PARC project. TEF consists of two buildings, an ADS target test facility (TEF-T) with 400MeV-250kW Pb-Bi target, and a Transmutation Physics Experimental Facility (TEF-P), which set up a fast critical assembly driven by low power proton beam with MA fuel. In TEF-T, irradiation test for materials, and engineering tests for Pb-Bi target operation will be performed. Various research plans such as nuclear data measurements have been proposed and layout of the experimental hall are underway. In the presentation, roadmap to establish the ADS transmutor and latest design activities for TEF construction will be summarized.

Journal Articles

Measurement of cavitation in a downstream conduit of the liquid lithium target for international fusion materials irradiation facility

Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Wakai, Eiichi

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

A liquid-Li free-surface stream is to serve as a beam target (Li target) for the IFMIF. As a major activity for the Li target in the IFMIF/EVEDA, the EVEDA Li test loop (ELTL) was constructed. This study focuses on cavitation-like acoustic noise in a conduit downstream of the Li target. This noise was detected by using acoustic-emission sensors. The intensity of the noise was examined versus cavitation number of the Li target. In addition, a time-frequency analysis for the acoustic signal was performed to characterize the noise. The results are as follows: (1) the intensity of the noise was increased as decreasing the cavitation number; (2) the noise was at first intermittent in a larger cavitation number, subsequently the noise became continuous as decreasing the cavitation number; (3) the noise consisted of a number of a high frequency acoustic emission which occurred in a short duration. For these results, we conclude that cavitation occurred in the downstream conduit.

Journal Articles

Measurement of LBE flow velocity profile by UDVP

Kikuchi, Kenji; Takeda, Yasushi*; Obayashi, Hiroo*; Tezuka, Masao*; Sato, Hiroshi

Journal of Nuclear Materials, 356(1-3), p.273 - 279, 2006/09

 Times Cited Count:9 Percentile:54.64(Materials Science, Multidisciplinary)

Measurements of LBE flow velocity profile were realized in the spallation target model by the ultrasonic Doppler velocity profile technique. Hitherto, it has not yet been done well because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. Measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels. The electromagnetic pump generates LBE flow and the flow rate was measured by the electromagnetic flow meter. Measurement results show that re-circulation occurred near the surface of beam window, which might affect a heat transfer of target container.

Journal Articles

Advanced design of high-intensity beam transport line in J-PARC

Sakamoto, Shinichi; Meigo, Shinichiro; Fujimori, Hiroshi*; Harada, Masahide; Konno, Chikara; Kasugai, Yoshimi; Kai, Tetsuya; Miyake, Yasuhiro*; Ikeda, Yujiro

Nuclear Instruments and Methods in Physics Research A, 562(2), p.638 - 641, 2006/06

 Times Cited Count:8 Percentile:51.02(Instruments & Instrumentation)

Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC) is an experimental facility where neutron and muon beams are provided as powerful probes. They are generated with high-intensity proton beam supplied through a 3-GeV proton beam transport (3NBT) line. Its beam optics and components were designed to transport the proton beam of large emittance with extremely low loss rate. The 3NBT accommodates an intermediate target that causes large beam loss. The scheme of the cascade target system was carefully devised to overcome difficulties due to high radiation.

Journal Articles

Design study around beam window of ADS

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Nishihara, Kenji; Saito, Shigeru; Mizumoto, Motoharu; Takano, Hideki*; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.325 - 334, 2005/11

The Japan Atomic Energy Research Institute (JAERI) is conducting the research and development (R&D) on the Accelerator-Driven Subcritical System (ADS) for the effective transmutation of minor actinides (MAs). The ADS proposed by JAERI is the 800 MWth, Pb-Bi cooled, tank-type subcritical reactor loaded with (MA+Pu) nitride fuel. The Pb-Bi is also used as the spallation target. In this study, the feasibility of the ADS was discussed with putting the focus on the design around the beam window. The partition wall was placed between the target region and the ductless-type fuel assemblies to keep the good cooling performance for the hot-spot fuel pin. The flow control nozzle was installed to cool the beam window effectively. The thermal-hydraulic analysis showed that the maximum temperature at the outer surface of the beam window could be repressed below 500 $$^{circ}$$C even in the case of the maximum beam power of 30 MW. The stress caused by the external pressure and the temperature distribution of the beam window was also below the allowable limit.

Journal Articles

Research and development program on accelerator driven subcritical system in JAERI

Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Kurata, Yuji; Mizumoto, Motoharu; Sasa, Toshinobu; Nishihara, Kenji; Saito, Shigeru; Umeno, Makoto*; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The Japan Atomic Energy Research Institute (JAERI) has been proceeding with the research and development (R&D) on accelerator-driven subcritical system (ADS). The ADS proposed by JAERI is a lead-bismuth (Pb-Bi) eutectic cooled fast subcritical core with 800 MWth. To realize such an ADS, some technical issues should be studied, developed and demonstrated. JAERI has started a comprehensive R&D program since the fiscal year of 2002 to acquire knowledge and elemental technology that are necessary for the validation of engineering feasibility of the ADS. The first stage of the program had been continued for three years. The program is conducted by JAERI, and many institutes, universities and private companies were involved. Items of R&D are concentrated on three technical areas peculiar to the ADS: (1) superconducting linear accelerator (SC-LINAC), (2) Pb-Bi eutectic as spallation target and core coolant, and (3) subcritical core design and technology. In the present work, the outline and the results in the first stage of the program are reported.

Journal Articles

Effect of proton beam profile on stress in JSNS target vessel

Kogawa, Hiroyuki; Ishikura, Shuichi*; Sato, Hiroshi; Harada, Masahide; Takatama, Shunichi*; Futakawa, Masatoshi; Haga, Katsuhiro; Hino, Ryutaro; Meigo, Shinichiro; Maekawa, Fujio; et al.

Journal of Nuclear Materials, 343(1-3), p.178 - 183, 2005/08

 Times Cited Count:8 Percentile:50.3(Materials Science, Multidisciplinary)

A cross-flow type (CFT) mercury target with flow guide blades, which has been developed for JSNS, can suppress the generation of stagnant flow region especially near the beam window where the peak heat density is generated due to spallation reaction. Then, a flat type beam window has been applied to the CFT target from the viewpoint of suppressing dynamic stress caused by a pressure wave, which has been estimated with a mercury model of the linear equation of state. The recent experimental results obtained by using a proton beam incidents to mercury led that a cutoff pressure model in the equation of state of mercury caused a suitable dynamic stress with experimental results. Dynamic stress analyses were carried out with the cutoff pressure model, in which the negative pressure less than 0.15 MPa was not generated. The generated dynamic stress in the flat beam window became much larger than that in a semi-cylindrical type window. However, the generated stress in the semi-cylindrical type beam window was over the allowable stress of SS316L under the peak heat density of 668 W/cc. In order to decrease the dynamic stress in the semi-cylindrical beam window, the incident proton beam was defocused to decrease the peak heat density down to 218 W/cm$$^{3}$$. As a result, the dynamic stress could be suppressed less than the allowable stress. On the other hand, due to defocus of the proton beam, high heat density was generated on the end of the flow guide blades, which caused high thermal stress exceeding the allowable stress. To decrease the thermal stress, several shapes of the blade ends were studied analytically, which were selected so as not to affect the mercury flow distribution. A simple thin-end blade showed low thermal stress below the allowable stress.

Journal Articles

Improved cavitation resistance of structural materials in pulsed liquid metal targets by surface hardening

Koppitz, T.*; Jung, P.*; M$"u$ller, G.*; Weisenburger, A.*; Futakawa, Masatoshi; Ikeda, Yujiro

Journal of Nuclear Materials, 343(1-3), p.92 - 100, 2005/08

 Times Cited Count:7 Percentile:45.73(Materials Science, Multidisciplinary)

Cavitation damage of structural materials due to pressure waves is expected to be one of the majior life-time limiting factors in high power liquid metal spallation targets under pulsed operation. Two methods are developed for the European Spallation Source (ESS) to mitigate this damage: Introduction of gas bubbles to surpress the pressure pulse and surface-hardening of structural materials. Surface-hardening of four 8-13%Cr martenstic steels was examined by thermal treatment with pulsed or scanned electron- and laser-beams as well as by nitriding in plasma. A specimens of the 12%Cr steel were tested in liquid mercury under pulsed proton irradiation, and under mechanical pulsed-loading. Surface damage was analysed by optical, confocal-laser, or scanning-electron microscopy, showing in both tests much better resistance of the hardened material compared to standard condition.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Target station design of 1 MW spallation neutron source at the high intensity proton accelerator facilities J-PARC

Takada, Hiroshi; Maekawa, Fujio; Honmura, Shiro*; Yoshida, Katsuhiko*; Teraoku, Takuji*; Meigo, Shinichiro; Sakai, Akio*; Kasugai, Yoshimi; Kanechika, Shuji*; Otake, Hidenori*; et al.

Proceedings of ICANS-XVI, Volume 3, p.1115 - 1125, 2003/07

no abstracts in English

Journal Articles

Bubble dynamics in the thermal shock problem of the liquid metal target

Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Hino, Ryutaro; Arakawa, Chuichi

Journal of Nuclear Materials, 318, p.113 - 121, 2003/05

 Times Cited Count:12 Percentile:63.02(Materials Science, Multidisciplinary)

The thermal shock stress in the mercury target vessel was analyzed: the target receives the incident proton beam at the energy of 1 MW with the pulse duration of 1ms. Negative pressure of maximal 61MPa was generated when the initial pressure of 52MPa propagated in mercury. It is expected then that the cavitation may be arisen by the negative pressure. So in order to know the cavitation behavior, the simulation study was carried out by using the equation of motion based on the bubble dynamics for a single bubble, and fundamental parameter analysis was carried out. It is found that a bubble has a potential expansion more than 1000 times with a change of the pressure at the window of the target vessel. Consequently wave propagation will be affected. Theoretical consideration was given to the wave motion of propagation in bubbly liquid. The equation of state in bubbly liquid can be approximated by the polynomial. The diameter of a bubble and the bubble volume fraction inherent in mercury can be decided if the critical pressure, the sound velocity, and resonance frequency is successfully measured by static and dynamic experiment.

Journal Articles

Structural integrity of beam window of mercury target

Kogawa, Hiroyuki; Ishikura, Shuichi*; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 7 Pages, 2003/04

The developments of a MW-class spallation neutron source facility are being carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. A mercury target will be used as a neutron source in the facility. The mercury target vessel made of 316LSS will be subjected to pressure wave generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will make huge stress on the vessel and will deform the vessel, which would cause cavitation in mercury. To estimate the structural integrity of the mercury target vessel, especially beam window, dynamic stress behaviors due to 1MW-pulsed proton beam injection were analyzed by using FEM code. In the analyses, two types of the target vessels with semi-cylindrical and flat type windows were used as analytical models. As the results, it has been understood that the stress generated in the beam window by the pressure wave could be treated as the secondary stress. Also it was confirmed that the flat type window would be more advantageous from the structural viewpoint than the semi-cylindrical type window.

36 (Records 1-20 displayed on this page)