Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi
JAEA-Research 2024-007, 24 Pages, 2024/08
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. It has been observed experimentally that volatility of RuO is suppressed by HNO generated by HNO radiolysis. The analysis of chemical reactions of NO including HNO and HNO in the waste tank is essential to simulate of these phenomena. To resolve this issue, an analytical approach has been attempted to couple dynamically two computer codes SHAWED and SCHERN. The simulation of boiling behavior in the tank is conducted with SHAWED. SCHERN simulates chemical behaviors of HNO, HNO and NO in the tank. A programmatic coupling algorithm and a trial simulation of the accident are presented in this report.
Ito, Shinji*; Shimizu, Hiroyuki*; Ono, Shintaro*; Takayama, Yusuke
Doboku Gakkai Rombunshu (Internet), 80(8), p.24-00030_1 - 24-00030_18, 2024/08
In the design consideration of a geological disposal facility for radioactive waste, it is essential to perform a mechanical evaluation that takes into account phenomena that may occur from construction and operation to post-closure. With this background, we have developed the long-term mechanical analysis system MACBECE. In this research, we have built an analysis system that can consistently evaluate the mechanical behavior considering the thermal and hydraulic evolution after the closure of the repository by incorporating the constitutive model for unsaturated soils and coupling with the thermal-hydraulic analysis. As a validation, a mechanical analysis was conducted for the in-situ experiment for full-scale engineered barrier system performance experiment at Horonobe URL. Despite some discrepancies due to constraints in two-dimensional analysis, the extended functionality of the analysis code was confirmed to effectively repro-duce the measured data.
Ishitsuka, Etsuo; Nagasumi, Satoru; Hasegawa, Toshinari; Kawai, Hiromi*; Wakisaka, Shinji*; Nagase, Sota*; Nakamura, Kento*; Yaguchi, Hiroki*; Ishii, Toshiaki; Nakano, Yumi*; et al.
JAEA-Technology 2024-008, 23 Pages, 2024/07
Five people from three universities participated in the 2023 summer holiday practical training with the theme of "Technical development on HTTR". The participants practiced the analysis of HTTR core, the analysis of behavior on loss of forced cooling test, the analysis of Iodine deposition behavior in primary cooling system and the feasibility study of energy storage system for HTGRs. In the questionnaire after this training, there were impressions such as that it was useful as a work experience and some students found it useful for their own research. These impressions suggest that this training was generally evaluated as good.
Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi
Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07
Times Cited Count:1 Percentile:77.18(Materials Science, Multidisciplinary)funabiki, Yuta*; Iyota, Muneyoshi*; Shobu, Takahisa; Matsuda, Tomoki*; Hayashi, Yujiro*; Sano, Tomokazu*; 8 of others*
Journal of Manufacturing Processes, 115, p.40 - 55, 2024/04
Times Cited Count:0 Percentile:0.00(Engineering, Manufacturing)Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.
Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01
Times Cited Count:1 Percentile:18.99(Chemistry, Physical)Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 587, p.154736_1 - 154736_8, 2023/12
Times Cited Count:1 Percentile:35.82(Materials Science, Multidisciplinary)Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08
Times Cited Count:3 Percentile:75.12(Materials Science, Multidisciplinary)Harjo, S.
Nihon Kessho Gakkai-Shi, 65(3), p.178 - 182, 2023/08
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2023-001, 26 Pages, 2023/05
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.
Abe, Satoshi; Okagaki, Yuria
Nuclear Engineering and Design, 404, p.112165_1 - 112165_14, 2023/04
Times Cited Count:2 Percentile:59.55(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2022-038, 102 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2021. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop a model to predict concentration profiles, and to analyze waste management scenarios, with a focus on underground concrete structures in contact with contaminated water. Migration behaviors depend on radionuclides and their chemical species. Sorption of I is less significant on C-S-H and C-A-S-H than on hardened cement paste with two orders of magnitude smaller distribution coefficient , while of U was the same …
Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10
Suzuki, Kenta; Yashiro, Hiroshi*; Kawabata, Kuniaki
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10
Tripathi, R.*; Adroja, D. T.*; Ritter, C.*; Sharma, S.*; Yang, C.*; Hillier, A. D.*; Koza, M. M.*; Demmel, F.*; Sundaresan, A.*; Langridge, S.*; et al.
Physical Review B, 106(6), p.064436_1 - 064436_17, 2022/08
Times Cited Count:7 Percentile:61.70(Materials Science, Multidisciplinary)Ohira, Hiroaki*; Tanaka, Masaaki; Yoshikawa, Ryuji; Ezure, Toshiki
Annals of Nuclear Energy, 172, p.109075_1 - 109075_10, 2022/07
Times Cited Count:1 Percentile:18.18(Nuclear Science & Technology)In order to evaluate the mist behavior in the cover gas region of Sodium-cooled Fast Reactors (SFRs) in good accuracy, turbulent model for Rayleigh-Bnard convection (RBC) was selected, and the Reynolds-averaged number density and momentum equations for mist behavior were developed and incorporated into the OpenFOAM code. In the first stage, the RBC in a simple parallel channel was calculated using Favre-averaged k- SST model. The average temperature and flow characteristics agreed well with results from DNS, LES, and experiments. Then the basic heat transfer experiment simulating the cover gas region of SFRs was calculated using this turbulent model and new mist models. The calculated average temperature distribution in the height direction and the mist mass concentration agreed well with the experimental results. We developed a method that could simulate the mist behavior in turbulent RBC environments and the cover gas region of SFRs with high accuracy.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-010, 155 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2021-013, 20 Pages, 2022/01
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.
Suzuki, Kenta; Kawabata, Kuniaki
New Trends in Intelligent Software Methodologies, Tools and Techniques; Frontiers in Artificial Intelligence and Applications, Vol.355, p.248 - 257, 2022/00
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2021-005, 25 Pages, 2021/08
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.