Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zablackaite, G.; Shiotsu, Hiroyuki; Kido, Kentaro; Sugiyama, Tomoyuki
Nuclear Engineering and Technology, 56(2), p.536 - 545, 2024/02
Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)Ono, Ayako; Sakashita, Hiroto*; Yamashita, Susumu; Suzuki, Takayuki*; Yoshida, Hiroyuki
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 7 Pages, 2022/10
The new prediction method of critical heat flux (CHF) of the fuel assemblies based on the mechanism is proposed in this study. The prediction method of CHF based on the mechanism has been needed for a long time to enhance the safety analysis and reduce the design cost. From several experimental findings of the liquid-vapor behavior near the heating surface from the nucleate boiling to the CHF, the authors consider that the macrolayer dryout model will be appropriate to predict the CHF under the reactor condition. The prediction method of the macrolayer thickness and the passage period of vapor mass in the fuel assemblies are needed to predict CHF from the macrolayer dryout model. In this study, the CHF under the forced convection is evaluated by combining the prediction methods for the macrolayer thickness and passage period of vapor mass, which are proposed by authors. The prediction of the CHF under the forced convection is examined and compared with the experimental data.
Ono, Ayako; Yamashita, Susumu; Sakashita, Hiroto*; Suzuki, Takayuki*; Yoshida, Hiroyuki
Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09
Japan Atomic Energy Agency is developing the computational fluid dynamics code, JUPITER, based on the volume of fluid (VOF) method to analyze detailed thermal-hydraulics in a reactor. The detailed numerical simulation of boiling from a heating surface needs a substantial computational cost to resolve the microscale thermal-hydraulic phenomena such as the bubble generation from a cavity and evaporation of a micro-layer. This study developed the simplified boiling model from the heating surface to reduce the computational cost, which will apply to the detailed simulation code based on the surface tracking method such as JUPITER. We applied the simplified boiling model to JUPITER, and compared the simulation results with the experimental data of the vertical heating surface in the forced convection. We confirmed the degree of their reproducibility, and the issues to be modified were extracted.
Ono, Ayako; Yamashita, Susumu; Sakashita, Hiroto*; Suzuki, Takayuki*; Yoshida, Hiroyuki
Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07
JAEA is implementing a simulation of a two-phase flow in the reactor core by TPFIT and JUPITER which are developed by JAEA based on the surface tracking method. However, it is impossible to simulate a boiling on the heating surface in the large-scale domain by this type of simulation method since the simulation of boiling based on the surface tracking method needs the fine mesh which sufficiently resolves the initiation of boiling. Therefore, JAEA started to develop the simplified boiling model applied for the two-phase flow in the fuel assemblies. In this study, the simulation results of the convection boiling on a vertical heating surface and the comparison between the simulation results and experimental results are shown.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 59(3), p.357 - 367, 2022/03
Times Cited Count:6 Percentile:56.19(Nuclear Science & Technology)Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.
Okawa, Tomio*; Mori, Shoji*; Liu, W.*; Ose, Yasuo*; Yoshida, Hiroyuki; Ono, Ayako
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(12), p.820 - 824, 2021/12
The evaluation method of the critical heat flux based on the mechanism is needed for the efficient design and development of fuel in reactors and the appropriate safety evaluation. In this paper, the current researches relating to the mechanism of the critical heat flux are reviewed, and the issue to be considered in the future are discussed.
Lu, K.; Katsuyama, Jinya; Li, Y.
Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 10 Pages, 2020/08
Miwa, Shuhei; Takase, Gaku; Imoto, Jumpei; Nishioka, Shunichiro; Miyahara, Naoya; Osaka, Masahiko
Journal of Nuclear Science and Technology, 57(3), p.291 - 300, 2020/03
Times Cited Count:8 Percentile:62.42(Nuclear Science & Technology)For the evaluation of transport behavior of control material boron in a severe accident of BWR from the viewpoint of chemical effects on cesium and iodine behavior, boron chemistry during transportation in the high temperature region above 400 K was experimentally investigated. The heating tests of boron oxide specimen were conducted using the dedicated experimental apparatus reproducing fission product release and transport in steam atmosphere. Released boron oxide vapor was deposited above 1,000 K by the condensation onto stainless steel. The boron deposits and/or vapors significantly reacted with stainless steel above 1,000 K and formed the stable iron-boron mixed oxide (FeO)BO. These results indicate that released boron from degraded BWR control blade in a severe accident could remain in the high temperature region such as a Reactor Pressure Vessel. Based on these results, it can be said that the existence of boron deposits in the high temperature region would decrease the amount of transported cesium vapors from a Reactor Pressure Vessel due to possible formation of low volatile cesium borate compounds by the reaction of boron deposits with cesium vapors.
Hata, Kuniki
Hoshasen Kagaku (Internet), (103), P. 65, 2017/04
no abstracts in English
Liu, W.; Onuki, Akira; Tamai, Hidesada; Akimoto, Hajime
Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 5 Pages, 2005/10
In this research, the newest version of critical power correlation for tight-lattice rod bundles is proposed by using 7-rod and 37-rod bundle data derived in Japan Atomic Energy Research Institute (JAERI). For comparatively high mass velocity region, the correlation is written in local critical heat flux - critical quality type. For low mass velocity region, it is written in critical quality - annular flow length type. The correlation is verified by JAERI data and Bettis Atomic Power Laboratory data. It is confirmed the correlation is able to give good prediction for the effects of mass velocity, inlet temperature, pressure and heated equivalent diameter on critical power. The correlation is further implemented into TRAC code to analyze flow decrease and power increase transients. It is confirmed transient BT can be predicted within the accuracy of the implemented critical power correlation.
Liu, W.; Kureta, Masatoshi; Onuki, Akira; Akimoto, Hajime
Journal of Nuclear Science and Technology, 42(1), p.40 - 49, 2005/01
Times Cited Count:7 Percentile:44.40(Nuclear Science & Technology)In this research, critical power correlation for tight-lattice rod bundles is newly proposed using 7-rod axially uniform-heated data, 7-rod and 37-rod axially double-humped-heated data at Japan Atomic Energy Research Institute (JAERI). For low mass velocity region ( 300 kg/ms), the correlation is written in critical quality - annular flow length type. For high mass velocity region ( 300 kg/ms), it is written in local critical heat flux - critical quality type. The standard deviation of ECPR (Experimental Critical Power Ratio) to the whole JAERI data (694 data points) is 6%. The correlation is verified by Bettis Atomic Power Laboratory data (177 points, standard deviation: 7.7%). The correlation is confirmed being able to give good prediction for the effects of mass velocity, inlet temperature, pressure and heated equivalent diameter on critical power. The applicable range of the correlation is: gap between rods from 1.0 to 2.29 mm, heated length from 1.26 to 1.8 m, mass velocity from 150 to 2000 kg/ms and pressure from 2 to 11 MPa.
Liu, W.; Kureta, Masatoshi; Akimoto, Hajime
JSME International Journal, Series B, 47(2), p.299 - 305, 2004/05
Experimental research on critical power in tight lattice bundle that simulates the Reduced-Moderation Water Reactor (RMWR) has been carried out in Japan Atomic Energy Research Institute (JAERI). The bundle consists one center rod and six peripheral rods. The 7 rods are arranged on a 14.3 mm equilateral triangular pitch. Each rod is 13 mm in outside diameter. An axial 12-step power distribution is employed to simulate the complicate heating condition in RMWR. Experiments are carried out under = 100-1400 kg/ms, = 2-8.5 MPa. Effects of mass velocity, inlet temperature, pressure, radial peaking factor and axial peaking factor on critical power and critical quality are discussed. Compared with axial uniform heating condition, the axial non-uniform heating condition causes an obvious decrease in critical quality. Arai correlation, which is the only correlation that has been optimized for tight lattice condition, is verified with the present experimental data. The correlation is found to be able to give reasonable prediction only around RMWR nominal operating condition.
Sugiyama, Tomoyuki; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Sasajima, Hideo; Nagase, Fumihisa; Fuketa, Toyoshi
JAERI-Research 2003-033, 76 Pages, 2004/01
Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 88BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding had enough ductility against the prompt deformation due to pellet cladding mechanical interaction. The plastic hoop strain reached 1.5% at the peak location. The cladding surface temperature locally reached about 600 deg C. Recovery of irradiation defects in the cladding due to high temperature during the pulse irradiation was indicated via X-ray diffractometry. Fission gas release during the pulse irradiation was from 3.1% to 8.2%, depending on the peak fuel enthalpy and the normal operation conditions.
Kiuchi, Kiyoshi; Ioka, Ikuo; Tachibana, Katsumi; Suzuki, Tomio; Fukaya, Kiyoshi*; Inohara, Yasuto*; Kambara, Shozo; Kuroda, Yuji*; Miyamoto, Satoshi*; Ogura, Kazutomo*
JAERI-Research 2002-008, 63 Pages, 2002/03
no abstracts in English
; Okumura, Keisuke
JAERI-M 92-068, 107 Pages, 1992/05
no abstracts in English
; Okumura, Keisuke;
JAERI-M 92-067, 35 Pages, 1992/05
no abstracts in English
; ; ; ; ; Seino, Takeshi*; ; ; ;
JAERI-M 84-031, 285 Pages, 1984/02
no abstracts in English
JAERI-M 83-098, 21 Pages, 1983/07
no abstracts in English
; ;
JAERI-M 82-155, 28 Pages, 1982/11
no abstracts in English
Murao, Yoshio;
JAERI-M 6984, 39 Pages, 1977/03
no abstracts in English