Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Estimation methods of blood boron concentration and error evaluation during boron neutron capture therapy for malignant brain tumor

Shibata, Yasushi*; Yamamoto, Kazuyoshi; Matsumura, Akira*; Yamamoto, Tetsuya*; Hori, Naohiko; Kishi, Toshiaki; Kumada, Hiroaki; Akutsu, Hiroyoshi*; Yasuda, Susumu*; Nakai, Kei*; et al.

JAERI-Research 2005-009, 41 Pages, 2005/03

JAERI-Research-2005-009.pdf:1.99MB

The measurement of neutron flux and boron concentration in the blood during medical irradiation is indispensable in order to evaluate the radiation in boron neutron capture therapy. It is, however, difficult to measure the blood boron concentration during neutron irradiation because access to the patient is limited. Therefore we prospectively investigated the predictability of blood boron concentrations using the data obtained at the first craniotomy after infusion of a low dosage of BSH. When the test could not be carried out, the blood boron concentration during irradiation was also predicted by using the 2-compartment model. If the final boron concentration after the end of the infusion is within 95% confidence interval of the prediction, direct prediction from biexponential fit will reduce the error of blood boron concentrations during irradiation to around 6%. If the final boron concentration at 6 or 9 hours after the end of infusion is out of 95% confidence interval of the prediction, proportional adjustment will reduce error and expected error after adjustment to around 12%.

Journal Articles

Application of invasion mathematical model in dosimetry for boron neutron capture therapy for malignant glioma

Yamamoto, Kazuyoshi; Kumada, Hiroaki; Nakai, Kei*; Endo, Kiyoshi*; Yamamoto, Tetsuya*; Matsumura, Akira*

Proceedings of 11th World Congress on Neutron Capture Therapy (ISNCT-11) (CD-ROM), 14 Pages, 2004/10

A dose distribution considered the tumor cell density distribution is required on the radiation therapy. We propose a novel method of determining target region considering the tumor cell concentration as a new function for the next generation Boron Neutron Capture Therapy (BNCT) dosimetry system. It has not been able to sufficiently define the degree of microscopic diffuse invasion of the tumor cells peripheral to a tumor bulk in malignant glioma using current medical imaging. Referring to treatment protocol of BNCT, the target region surrounding the tumor bulk has been set as the region which expands at the optional distance with usual 2cm margin from the region enhanced on T1 weighted gadolinium Magnetic Resonance Imaging (MRI). In this research, the cell concentration of the region boundary of the target was discussed by using tumor cell diffusion model in the sphere spatio-temporal system. The survival tumor cell density distribution after the BNCT irradiation was predicted by the two regions diffusion model for a virtual brain phantom.

Journal Articles

Reproducibility of thermal neutron flux distribution on patient's brain surface with a realistic phantom

Yamamoto, Kazuyoshi; Kumada, Hiroaki; Yamamoto, Tetsuya*; Matsumura, Akira*

Nippon Genshiryoku Gakkai Wabun Rombunshi, 3(2), p.193 - 199, 2004/06

To investigate the possibility of experimental approach for dose evaluation using a realistic phantom that faithfully reproduced the shape of a head, this research considered the manufacture of a patient's realistic phantom and the reappearance of actual medical irradiation conditions. We selected the rapid prototyping technology to produce the realistic phantom from the Computed Tomography (CT) imaging. This phantom was irradiated under the same clinical irradiation condition of this patient, and the thermal neutron distribution on the brain surface was measured in detail. Several subjects on material and data conversion in the production of realistic phantom were mentioned. As a result of reproducing medical irradiation using the realistic phantom, the maximum thermal neutron flux became a value about 22% lower than the surface of the actual brain. If the problems pointed out in this paper are solved, it may also be expected that it would become possible to check computational dosimetry system.

Journal Articles

Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams

Nakagawa, Yoshinobu*; Pooh, K. H.*; Kobayashi, Toru*; Kageji, Teruyoshi*; Uyama, Shinichi*; Matsumura, Akira*; Kumada, Hiroaki

Journal of Neuro-Oncology, 62(1), p.87 - 99, 2003/04

 Times Cited Count:105 Percentile:17.74

Our concept of boron neutron capture therapy (BNCT) is selective destruction of tumor cells using the heavy-charged particles Yielded through 10B(n, alpha)7 Li reactions. In the analysis of side effects due to radiation, we included all the 159 patients treated between 1977 and 2001. With respect to the radiation dose (i.e. physical dose of boron n-alpha reaction), the new protocol prescribes a minimum tumor volume dose of 15Gy or, alternatively, a minimum target volume dose of 18Gy. The maximum vascular dose should not exceed 15Gy (physical dose of boron n-alpha reaction) and the total amount of gamma rays should remain below 10Gy, including core gamma rays from the reactor and capture gamma in brain tissue. The outcomes for 10 patients who were treated by the new protocol using a new mode composed of thermal and epithermal neutrons are reported.

4 (Records 1-4 displayed on this page)
  • 1