Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kuroishi, Takeshi; Nomura, Yasushi
Journal of Nuclear Science and Technology, 40(6), p.433 - 440, 2003/06
Times Cited Count:2 Percentile:18.49(Nuclear Science & Technology)Effective source acceleration method is studied in criticality safety analysis for realistic spent fuel transport cask. Various axial burnup profiles based on in-core flux measurements are proposed in the OECD/NEA/BUC benchmark Phase II-C. In some cases, calculations by ordinary Monte Carlo method show very slow convergence of fission source distribution, and unacceptably large skipped cycles are needed. The matrix eigenvector calculation that has been developed and incorporated in the ordinary Monte Carlo calculation to improve the slow convergence is applied to the benchmark. The efficiency of this method depends on the precision of matrix elements. In a certain stage of insufficient convergence of fission source distribution, especially for this benchmark of very slow convergence, more acceleration procedure causes anomalous results because of large statistical fluctuations of matrix elements corresponding to low source levels. Therefore, we propose effective source acceleration method with less calculation time than increasing histories for the estimation of matrix elements.
Kuroishi, Takeshi; Hoang, A.; Nomura, Yasushi; Okuno, Hiroshi
JAERI-Tech 2003-021, 60 Pages, 2003/03
The reactivity effect of the asymmetry of axial burnup profile is studied for PWR spent fuel transport cask proposed in OECD/NEA Phase II-C benchmark. The axial burnup profiles are based on in-core flux measurements. Criticality calculations are performed with the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculations are carried out not only for cases in the benchmark but also for symmetric burnup cases. Both actinide-only approach and actinide plus fission product approach is considered. The end effect is more sensitive to higher burnup asymmetry. The axial fission distribution becomes strongly asymmetric as its peak shifts toward the fuel top end. The peak of fission distribution gets higher with the increase of either the burnup asymmetry or the assembly-averaged burnup. The conservatism of uniform axial burnup assumption for the actinide-only approach is estimated quantitatively in comparison with the keff result calculated with experiment-based strongest asymmetric axial burnup profile for the actinide plus fission product approach.
Okuno, Hiroshi; Sakai, Tomohiro*
Nuclear Technology, 140(3), p.255 - 265, 2002/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In order to facilitate discussions based on quantitative analysis about the end effect, which is often talked about in connection to burnup credit in criticality safety evaluation of spent fuel, we introduced in this paper a burnup importance function. This function shows the burnup effect on the reactivity as a function of the fuel position; an explicit expression of this function was derived according to the perturbation theory. The burnup importance function was applied to the Phase IIA benchmark model that was adopted by the OECD/NEA Expert Group on Burnup Credit Criticality Safety. The function clearly displayed that burnup importance of the end regions increases (1) as burnup, (2) as cooling time, (3) in consideration of burnup profile, and (4) in consideration of fission products.
Okuno, Hiroshi; Tonoike, Kotaro; Sakai, Tomohiro*
Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 8 Pages, 2002/10
As the burnup proceeds, reactivity of fuel assemblies for light water reactors decreases by depletion of fissile nuclides, especially in the axially central region. In order to describe the importance of the end regions to the reactivity change, a burnup importance function was introduced as a weighting function to a local burnup variation contributed to a reactivity decrease. The function was applied to the OECD/NEA/BUC Phase II-A model and a simplified Phase II-C model. The application to Phase II-A model clearly showed that burnup importance of the end regions increases as burnup and/or cooling time increases. Comparison of the burnup importance function for different initial enrichments was examined. The application result to the simplified Phase II-C model showed that the burnup importance function was helpful to find the most reactive fuel burnup distribution under the conditions that the average fuel burnup was kept constant and the variations in the fuel burnup were within the maximum and minimum measured values.
Lemehov, S.; Suzuki, Motoe
JAERI-Data/Code 2001-025, 338 Pages, 2001/08
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO2, UO2-Gd2O3, inhomogeneous MOX, and UO2-ThO2. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of 92U233-239, 93Np237-239, 94Pu238-243, 95Am241-244 (including isomers), and 96Cm242-245. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained.
Okuno, Hiroshi; Naito, Yoshitaka*; Ando, Yoshihira*
JAERI-Research 2000-041, 179 Pages, 2000/09
no abstracts in English
; Okuno, Hiroshi
JAERI-Research 96-003, 170 Pages, 1996/02
no abstracts in English
Yamagiwa, Mitsuru
Physics of Plasmas, 1(1), p.205 - 207, 1994/01
Times Cited Count:4 Percentile:26.06(Physics, Fluids & Plasmas)no abstracts in English