Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical investigation of accuracy of conductance-typed wire-mesh sensor using CFD and electrostatic simulations

Uesawa, Shinichiro; Ono, Ayako; Yamashita, Susumu; Yoshida, Hiroyuki

Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 7 Pages, 2024/11

A conductance-typed wire-mesh sensor (WMS), utilizing the difference in conductivity between gas and liquid phases between the electrodes, is one of the practical measurement techniques of a cross-sectional void fraction distribution in a flow path. In this study, we performed two-phase computational fluid dynamics (CFD) and electrostatic simulations around a WMS for a single spherical bubble and bubbly flow to clarify the systematic error in the WMS. The results for the single bubble indicated that there were systematic errors based on the non-uniform current density distribution around the WMS. The correlation between instantaneous void fractions and WMS signals is not uniquely determined for positions of the single bubble moving across the WMS, even for the same bubble. Moreover, the correlation between the instantaneous void fractions and the WMS signals did not fit in a linear approximation and Maxwell's equation, which traditionally used transformation methods from the WMS signal to the void fraction. The results for the bubbly flow indicated that the WMS had difficulty in quantitative measurements of the instantaneous void fraction because the values had a significant deviation of the void fraction of approximately $$pm$$0.2. On the other hand, time-averaged void fraction values had relatively small deviation. Thus, we concluded that the WMS, using existing transformation methods, can measure time-averaged void fractions, but it is difficult to measure quantitatively instantaneous void fractions.

Journal Articles

Large-eddy simulation on two-liquid mixing in the horizontal leg and downcomer (the TAMU-CFD Benchmark), with respect to fluctuation behavior of liquid concentration

Abe, Satoshi; Okagaki, Yuria

Nuclear Engineering and Design, 404, p.112165_1 - 112165_14, 2023/04

 Times Cited Count:2 Percentile:59.55(Nuclear Science & Technology)

JAEA Reports

Experimental and numerical study on energy separation in vortex tube with a hollow helical fin (Joint research)

Kureta, Masatoshi; Yamagata, Yoji*; Miyakoshi, Ken*; Mashii, Tatsuya*; Miura, Yoshiaki*; Takahashi, Kazunori*

JAEA-Research 2022-007, 28 Pages, 2022/09

JAEA-Research-2022-007.pdf:8.17MB

To enhance energy separation in a counter-current Ranque-Hilsch vortex tube, a newly designed hollow helical fin was inserted into the hot tube of the vortex tube. In this study, the effect of the fin on the energy separation was investigated using three types of the vortex tube, and then computational fluid dynamics (CFD) simulation has been conducted to understand the experimental results and discuss the flow structure in the vortex tube with the hollow helical fin. As a result, it was found from the experimental data that the fin effectively enhanced energy separation, and that the tube length could be shorten. When the inlet air pressure was 0.5 MPa, the maximum temperature difference from the inlet to the cold exit was 62.2$$^{circ}$$C. The CFD code employing the Reynolds Stress Model (RSM) turbulence model was used to analyze the fluid dynamics in the vortex tube. As a result, it was confirmed that the temperature, velocity, and pressure distributions changed significantly at the stagnation point, and that the distributions in the tube with the fin were completely different from those without the fin. It was thought that a strong reversing helical vortex flow with small recirculating vortex structure formed between the fin end and the stagnation point on the cold exit side would enhance energy separation in the vortex tube with the hollow helical fin.

Journal Articles

Simulation of the self-propagating hydrogen-air premixed flame in a closed-vessel by an open-source CFD code

Thwe Thwe, A.; Terada, Atsuhiko; Hino, Ryutaro; Nagaishi, Ryuji; Kadowaki, Satoshi

Journal of Nuclear Science and Technology, 59(5), p.573 - 579, 2022/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

The simulations of the combustion of self-propagating hydrogen-air premixed flame are performed by an open-source CFD code. The flame propagation behavior, flame radius, temperature and pressure are analyzed by varying the initial laminar flame speed and grid size. When the initial laminar speed increases, the thermal expansion effects become strong which leads the increase of flame radius along with the increase of flame surface area, flame temperature and pressure. A new laminar flame speed model derived previously from the results of experiment is also introduced to the code and the obtained flame radii are compared with those from the experiments. The formation of cellular flame fronts is captured by simulation and the cell separation on the flame surface vividly appears when the gird resolution becomes sufficiently higher. The propagation behavior of cellular flame front and the flame radius obtained from the simulations have the reasonable agreement with the previous experiments.

Journal Articles

Iterative methods with mixed-precision preconditioning for ill-conditioned linear systems in multiphase CFD simulations

Ina, Takuya*; Idomura, Yasuhiro; Imamura, Toshiyuki*; Yamashita, Susumu; Onodera, Naoyuki

Proceedings of 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ScalA21) (Internet), 8 Pages, 2021/11

 Times Cited Count:2 Percentile:58.18(Computer Science, Software Engineering)

A new mixed-precision preconditioner based on the iterative refinement (IR) method is developed for preconditioned conjugate gradient (P-CG) and multigrid preconditioned conjugate gradient (MGCG) solvers in a multi-phase thermal-hydraulic CFD code JUPITER. In the IR preconditioner, all data is stored in FP16 to reduce memory access, while all computation is performed in FP32. The hybrid FP16/32 implementation keeps the similar convergence property as FP32, while the computational performance is close to FP16. The developed solvers are optimized on Fugaku (A64FX), and applied to ill-conditioned matrices in JUPITER. The P-CG and MGCG solvers with the new IR preconditioner show excellent strong scaling up to 8,000 nodes, and at 8,000 nodes, they are respectively accelerated up to 4.86$$times$$ and 2.39$$times$$ from the conventional ones on Oakforest-PACS (KNL).

Journal Articles

Communication avoiding multigrid preconditioned conjugate gradient method for extreme scale multiphase CFD simulations

Idomura, Yasuhiro; Ina, Takuya*; Yamashita, Susumu; Onodera, Naoyuki; Yamada, Susumu; Imamura, Toshiyuki*

Proceedings of 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2018) (Internet), p.17 - 24, 2018/11

 Times Cited Count:8 Percentile:91.36(Computer Science, Theory & Methods)

A communication avoiding (CA) multigrid preconditioned conjugate gradient method (CAMGCG) is applied to the pressure Poisson equation in a multiphase CFD code JUPITER, and its computational performance and convergence property are compared against CA Krylov methods. In the JUPITER code, the CAMGCG solver has robust convergence properties regardless of the problem size, and shows both communication reduction and convergence improvement, leading to higher performance gain than CA Krylov solvers, which achieve only the former. The CAMGCG solver is applied to extreme scale multiphase CFD simulations with $$sim 90$$ billion DOFs, and it is shown that compared with a preconditioned CG solver, the number of iterations is reduced to $$sim 1/800$$, and $$sim 11.6times$$ speedup is achieved with keeping excellent strong scaling up to 8,000 nodes on the Oakforest-PACS.

Journal Articles

Proposal and implementation of a fluid-Structure coupled simulation system with parallel commercial codes

Guo, Z.; Hazama, Osamu; Yamagiwa, Mitsuru; Hirayama, Toshio; Matsuzawa, Teruo*

Advances in computational & experimental engineering & sciences (CD-ROM), 6 Pages, 2003/07

no abstracts in English

Journal Articles

Large-scale parallel simulation of blood flow coupled with a diseased blood vessel

Guo, Z.; Hirayama, Toshio; Matsuzawa, Teruo*

Application of High-Performance Computing in Engineering VII, p.125 - 134, 2002/00

The objective of the presented study is to develop a LC (Loose Coupling) simulation system implementing two commercial numerical simulation software packages linked by a library called MpCCI (Mesh-based paralle Code Coupling Interface). This library is an essential and a robust tool for carrying out interpolations of the physical variables (values) between different numerical models. We have programmed the MpCCI library into two commercial codes, Mecano and Star-CD, and implemented the developed LC simulation system on a distributed parallel computer by a MPMD (Multi Program Multi Data) parallel programming style. Numerical simulation results of an aneurysm diseased artery acquired by dynamic CSD (Computational Structure Dynamics) coupled transient CFD (Computational Fluid Dynamics) undergoing pulsation blood flow with the LC simulation system is presented which illustrate the mechanical behaviors of the arterial wall.

Journal Articles

CFD/CSD coupled simulation on a parallel computer cluster

; Takemiya, Hiroshi*; Onishi, Ryoichi*

Proc. of 14th AIAA Computational Fluid Dynamics Conf., 11 Pages, 1999/00

no abstracts in English

JAEA Reports

10 (Records 1-10 displayed on this page)
  • 1