Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nojiri, Naoki; Fujimoto, Nozomu; Mori, Tomoaki; Obata, Hiroyuki*
JAERI-Data/Code 2004-012, 65 Pages, 2004/10
DELIGHT code is a fuel cell burnup analysis code which can produce the group constants necessary for High Temperature Gas-cooled Reactors (HTGR) core analyses. Collision probability method is used to the lattice calculation. The lattice calculation model is a cylinder type fuel or a ball type fuel of the HTGR. This code characterizes the burnup calculation considering the double heterogeneity caused by coated fuel particles of the HTGR fuel. DELIGHT code has updated its nuclear data library to the latest JENDL-3.3 data, and included new burnup chain models in order to calculate high burnup HTGR cores. The material regions of the periphery burnable poisons (BPs) were divided into details in order to improve calculation accuracy of the BP lattice calculation. This report presents the revised points of the DELIGHT-8 and can be used as user's manual.
Unesaki, Hironobu*; Okumura, Keisuke; Kitada, Takanori*; Saji, Etsuro*
Transactions of the American Nuclear Society, 88, p.436 - 438, 2003/06
In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by JAERI has proposed "Reactor Physics Benchmark for LWR Next Generation Fuels". The next generation fuels aim at very high burn-up of about 70GWd/t in PWR or BWR with UO or MOX fuels whose fissile enrichments may exceed the Japanese regulatory limitations for the current LWR fuels such as 5wt.% U-235. Until now, twelve organizations have pariticipated in the benchmark activity. From the comparison with the cell burn-up calculation results using different codes and library data, status of the calculation accuracy and future subjects are clarified.
Okumura, Keisuke; Unesaki, Hironobu*; Kitada, Takanori*; Saji, Etsuro*
Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 10 Pages, 2002/10
In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by Japan Atomic Energy Research Institute has proposed "Reactor Physics Benchmark for LWR Next Generation Fuels". The next generation fuels aim at very high burn-up of about 70GWd/t in PWR or BWR with UO2 or MOX fuels whose fissile enrichments may exceed the Japanese regulatory limitations for the current LWR fuels such as 5wt.% U-235. Twelve organizations have carried out the analyses of the benchmark problems with different codes and data, and their submitted results have been compared. As a result, status of accuracy with the current data and method and some problems to be solved in the future were clarified.
Research Committee on Reactor Physics
JAERI-Research 2001-046, 326 Pages, 2001/10
The Working Party on Reactor Physics for LWR Next Generation Fuels in the Research Committee on Reactor Physics, which is organized by the Japan Atomic Energy Research Institute, has recently proposed a series of benchmark problems to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels. The next generation fuels mean the ones aiming for further extended burnup such as 70GWd/t over the current design. The resultant specifications of the benchmark problem therefore neglect some of the current limitations such as 5wt%235U to achieve the above-mentioned target. The Working Party proposed six benchmark problems, which consist of pin-cell, PWR assembly and BWR assembly geometries loaded with uranium and MOX fuels, respectively. The present report describes the detailed specifications of the benchmark problems. The results of preliminary analyses performed by the eleven member organizations and their comparisons are also presented.
; Suyama, Kenya;
Journal of Nuclear Science and Technology, 35(3), p.240 - 242, 1998/03
Times Cited Count:1 Percentile:15.05(Nuclear Science & Technology)no abstracts in English
Shindo, Ryuichi; Yamashita, Kiyonobu; Murata, Isao
JAERI-M 90-048, 225 Pages, 1990/03
no abstracts in English
Naito, Yoshitaka; ; Masukawa, Fumihiro;
JAERI-M 90-019, 62 Pages, 1990/02
no abstracts in English
;
JAERI-M 5661, 53 Pages, 1974/04
no abstracts in English