Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Amaya, Masaki
High Temperature Corrosion of Materials, 101(3), p.455 - 469, 2024/06
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 587, p.154736_1 - 154736_8, 2023/12
Times Cited Count:1 Percentile:34.39(Materials Science, Multidisciplinary)Mohamad, A. B.; Nemoto, Yoshiyuki; Furumoto, Kenichiro*; Okada, Yuji*; Sato, Daiki*
Corrosion Science, 224, p.111540_1 - 111540_15, 2023/11
Times Cited Count:2 Percentile:33.88(Materials Science, Multidisciplinary)Hidaka, Akihide; Kawashima, Shigeto*; Kajino, Mizuo*
Journal of Nuclear Science and Technology, 60(7), p.743 - 758, 2023/07
Times Cited Count:2 Percentile:57.39(Nuclear Science & Technology)An accurate estimation of radionuclides released during the Fukushima accident is essential. Therefore, authors investigated Te release using the Unit emission-regression estimation method, in which the deposition distribution is weighted based on the hourly deposition obtained from mesoscale meteorological model calculations assuming Unit emissions. The previous study focused on confirming the applicability of this method. Subsequent examination revealed that if any part of the time when a release have occurred is missing from the estimated release period, the entire source term calculation will be distorted. Therefore, this study performed the recalculation by extending the estimation period to cover all major releases. Consequently, unspecified release events were clarified, and their correspondence to in-core events was confirmed. The Te release caused by Zr cladding complete oxidation can explain the regional dependence of the
Te/
Cs ratio in the soil contamination map.
Pham, V. H.; Kurata, Masaki; Steinbrueck, M.*
Thermo (Internet), 1(2), p.151 - 167, 2021/09
Nagase, Fumihisa; Narukawa, Takafumi; Amaya, Masaki
JAEA-Review 2020-076, 129 Pages, 2021/03
Each light-water reactor (LWR) is equipped with the Emergency Core Cooling System (ECCS) to maintain the coolability of the reactor core and to suppress the release of radioactive fission products to the environment even in a loss-of-coolant accident (LOCA) caused by breaks in the reactor coolant pressure boundary. The acceptance criteria for ECCS have been established in order to evaluate the ECCS performance and confirm the sufficient safety margin in the evaluation. The limits defined in the criteria were determined in 1975 and reviewed based on state-of-the-art knowledge in 1981. Though the fuel burnup extension and necessary improvements of cladding materials and fuel design have been conducted, the criteria have not been reviewed since then. Meanwhile, much technical knowledge has been accumulated regarding the behavior of high-burnup fuel during LOCAs and the applicability of the criteria to the high-burnup fuel. This report provides a comprehensive review of the history and technical bases of the current criteria and summarizes state-of-the-art technical findings regarding the fuel behavior during LOCAs. The applicability of the current criteria to the high-burnup fuel is also discussed.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(1), p.68 - 78, 2020/01
Times Cited Count:3 Percentile:27.62(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.912 - 921, 2019/09
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(7), p.650 - 660, 2019/07
Times Cited Count:14 Percentile:80.17(Nuclear Science & Technology)Yumura, Takanori; Amaya, Masaki
Annals of Nuclear Energy, 120, p.798 - 804, 2018/10
Times Cited Count:6 Percentile:48.31(Nuclear Science & Technology)Negyesi, M.; Amaya, Masaki
Journal of Nuclear Science and Technology, 54(10), p.1143 - 1155, 2017/10
Times Cited Count:8 Percentile:57.82(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 53(1), p.112 - 122, 2016/01
Times Cited Count:8 Percentile:57.10(Nuclear Science & Technology)Udagawa, Yutaka; Nagase, Fumihisa; Fuketa, Toyoshi
JAERI-Research 2005-020, 40 Pages, 2005/09
In order to investigate effects of quenching temperature and cooling rate before quench on cladding ductility reduction under LOCA conditions, samples cut from non-irradiated 1717-type Zircaloy-4 cladding tubes for PWRs were oxidized in steam at 1373 and 1473 K, cooled at 2 to 7 K/s, and quenched at 1073 to 1373 K. The quenched samples were subjected to ring compression test, microstructure observation, and Vickers hardness test. Quenching temperature decrease obviously increased area fraction of
phase in the radial cross section of the cladding, and reduced cladding ductility. Slow-cooling rate decrease increased unit size and hardness of precipitated
phase, while
phase area fraction and cladding ductility were not significantly changed.
phase is harder than the surrounding region in the metallic layer and has higher oxygen content, indicating its low ductility. Consequently, increase in the area fraction in the cladding is a main cause of the reduction in cladding ductility with decrease in the quenching temperature.
Nagase, Fumihisa; Fuketa, Toyoshi
Journal of Nuclear Science and Technology, 42(2), p.209 - 218, 2005/02
Times Cited Count:49 Percentile:93.70(Nuclear Science & Technology)Regarding high burn-up fuel behavior under LOCA conditions, LOCA-simulated experiments were performed with unirradiated Zircaloy-4 claddings. Claddings containig 100 to 1450 ppm were isothermally oxidized at at 1220 to 1500 K in steam flow, and quenched by flooding water. Axial shrinkage of the rods during the quench was restrained controlling the maximum restraint load at four different levels. Primarily depending on fraction of the cladding thickness oxidized, the claddings fractured into two pieces during the quench, with circumferential cracking. The fracture/non-fracture threshold as for the oxidized fraction decreases as both initial hydrogen concentration and axial restraint load increase. Consequently, it was shown that the threshold is higher than 20% cladding oxidation, e.g. sufficiently higher than the limit in the Japanese ECCS acceptance criteria, irrespective of hydrogen concentration, when the restraint load is below 535 N.
Nagase, Fumihisa; Fuketa, Toyoshi
Proceedings of 2004 International Meeting on LWR Fuel Performance, p.500 - 506, 2004/09
A systematic research program is being conducted at the Japan Atomic Energy Research Institute (JAERI), which aims at a wide range database for evaluating the influence of further burnup extension on fuel behavior under LOCA conditions. As a part of the program, integral thermal shock tests simulating the whole LOCA sequence have been conducted with Zircaloy-4 fuel claddings, irradiated to 39 and 44GWd/t at a PWR. One cladding, oxidized to about 30% ECR, fractured during the quench. The fracture condition agrees with the fracture criteria for non-irradiated claddings that have similar hydrogen concentrations (about 25% ECR). Two claddings, oxidized to about 16 and 18% ECR, survived the quench, indicating that fracture/non-fracture boundary is not reduced so significantly by irradiation for the examined burnup range. The present paper describes information obtained from the tests including oxidation kinetics and rupture behavior.
Nagase, Fumihisa; Fuketa, Toyoshi
Journal of Nuclear Science and Technology, 41(7), p.723 - 730, 2004/07
Times Cited Count:48 Percentile:93.02(Nuclear Science & Technology)Experiments simulating loss-of-coolant accident (LOCA) conditions were performed to evaluate effect of pre-hydriding on thermal-shock resistance of oxidized Zircaloy-4 cladding. Artificially hydrided (400 to 600 ppm) and non-hydrided claddings were subjected to the tests. Since cladding fracture on quenching primarily depends on the oxidation amount, fracture threshold was evaluated in terms of "Equivalent Cladding Reacted (ECR)". Under axially non-restrained condition, the fracture threshold is 56% ECR and the influence of pre-hydriding is not seen. The fracture threshold is decreased by restraining the test rods on quenching, and it is more remarkable in pre-hydrided claddings than in non-hydrided claddings. Consequently, the fracture threshold was 20% ECR and 10% ECR for non-hydrided and pre-hydrided claddings, respectively, under the fully restrained condition. These results indicate possible decrease of fracture threshold of high burnup fuel claddings under LOCA conditions.
Nagase, Fumihisa; Fuketa, Toyoshi
NUREG/CP-0185, p.321 - 331, 2004/00
With a view to obtaining basic data to evaluate high burnup fuel behavior under loss of coolant accident (LOCA) conditions, a research program is being conducted at the Japan Atomic Energy Research Institute (JAERI). The program consists of integral thermal shock tests and other separate tests for oxidation rate and mechanical property of fuel claddings. Prior to the tests on irradiated claddings, the tests have been conducted on non-irradiated claddings to examine separate effects of corrosion and hydrogen absorption during reactor operation. Hydrogen effects have been especially examined because hydrogen absorption has the great impact on cladding embrittlement. The tests on irradiated claddings have recently been started and preliminary results have been obtained. The present paper summarizes recent results from those studies.
Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi
Journal of Nuclear Science and Technology, 40(4), p.213 - 219, 2003/04
Times Cited Count:75 Percentile:96.92(Nuclear Science & Technology)Isothermal oxidation tests in flowing steam were performed on low-Sn Zircaloy-4 cladding tubes over the wide temperature range from 773 to 1573 K in order to obtain oxidation kinetics applicable to various loss-of-coolant accident conditions of LWRs. The oxidation generally obeys a parabolic rate law for the examined time range up to 3600s at temperatures from 1273 K to 1573K, and for a limited time range up to 900s from 773 to 1253 K. A cubic rate law is preferable for evaluating the longer-term oxidation at 1253 K and below. The parabolic rate law constant and the cubic rate law constant for measured weight gain were evaluated at every examined temperature, and Arrhenius-type equations were determined in order to describe the temperature dependence of the rate constants. It was indicated that the change of the oxidation kinetics from the cubic to the parabolic rate and the discontinuities in the temperature dependence of the rate constants are caused by the monoclinic/tetragonal phase transformation of ZrO.
Nagase, Fumihisa; Uetsuka, Hiroshi
NUREG/CP-0176, p.335 - 342, 2002/05
no abstracts in English
Boyack, B. E.*; Motta, A. T.*; Peddicord, K. L.*; Alexander, C. A.*; Andersen, J. G. M.*; Blaisdell, J. A.*; Dunn, B. M.*; Ebeling-Koning, D.*; Fuketa, Toyoshi; Hache, G.*; et al.
NUREG/CR-6744, 455 Pages, 2001/12
no abstracts in English