Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyazawa, Takeshi; Tanno, Takashi; Imagawa, Yuya; Hashidate, Ryuta; Yano, Yasuhide; Kaito, Takeji; Otsuka, Satoshi; Mitsuhara, Masatoshi*; Toyama, Takeshi*; Onuma, Masato*; et al.
Journal of Nuclear Materials, 593, p.155008_1 - 155008_16, 2024/05
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 587, p.154736_1 - 154736_8, 2023/12
Times Cited Count:1 Percentile:31.89(Materials Science, Multidisciplinary)Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09
Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08
Times Cited Count:3 Percentile:70.15(Materials Science, Multidisciplinary)Furumoto, Kenichiro; Udagawa, Yutaka
Journal of Nuclear Science and Technology, 60(5), p.500 - 511, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12
Narukawa, Takafumi
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(11), p.780 - 785, 2021/11
no abstracts in English
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(7), p.782 - 791, 2020/07
Times Cited Count:7 Percentile:57.65(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(1), p.68 - 78, 2020/01
Times Cited Count:3 Percentile:27.28(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.912 - 921, 2019/09
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(7), p.650 - 660, 2019/07
Times Cited Count:14 Percentile:79.50(Nuclear Science & Technology)Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14) (USB Flash Drive), 10 Pages, 2018/09
Sugawara, Takanori; Tsujimoto, Kazufumi
JAEA-Research 2017-011, 35 Pages, 2017/10
The construction of Transmutation Physics Experimental Facility (TEF-P) is planned in the J-PARC project. TEF-P is a critical assembly and it will treat minor actinide (MA) fuel in the experiment. The temperature when the air cooling for the TEF-P core would stop was estimated but there were no data to evaluate the soundness of the MA fuel pin. To set a tentative limit temperature for the TEF-P core, cladding tube burst experiment was performed. As the result, the cladding tube burst occurred at 660C as the severest case. Through these results and the estimation of creep rupture time, the tentative limit temperature for the TEF-P core was set to 600
C.
Asayama, Tai; Otsuka, Satoshi
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 15 Pages, 2017/06
This paper summarizes ongoing efforts in Japan Atomic Energy Agency on the development of core and structural materials for sodium-cooled fast reactors. For core materials, oxide dispersion strengthened (ODS) steels and 11Cr ferritic steel (PNC-FMS) will be used for the fuel pin cladding and wrapper tube, respectively. As for ODS steel, 9Cr- and 11Cr-ODS steels have been extensively developed. Their laboratory-scale manufacturing technology has been developed including reliability improvement in tube microstructure and strength homogeneity. As for the PNC-FMS wrapper tube, the development of a dissimilar joining technique with type 316 steel and properties evaluation of dissimilar welds have been carried out. For structural materials, codification of 316FR stainless steel and Modified 9Cr-1Mo steel is ongoing. Acquisition and collection of long-term data of base metal and welded joints are continued and evaluation methodologies are being developed to establish a technical basis for 60-year design.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 53(11), p.1758 - 1765, 2016/11
Times Cited Count:10 Percentile:64.82(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 53(1), p.112 - 122, 2016/01
Times Cited Count:8 Percentile:56.75(Nuclear Science & Technology)Shinozaki, Takashi; Mihara, Takeshi; Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki
JAEA-Research 2014-025, 34 Pages, 2014/12
EDC test is a test method on the mechanical property of fuel cladding tube, and it focuses on the stress condition generated by PCMI under a RIA. We conducted EDC tests which simulate the mechanical conditions during a RIA by using the unirradiated cladding tubes which simulate hydride rim. Circumferential residual strains observed in post-test specimens tended to decrease with increasing the hydrogen concentration in the test cladding tubes and the thickness of the hydride rim. We also prepared RAG tube and performed EDC tests on it. It was observed that circumferential total strains at failure tended to decrease with increasing pre-crack depth on the outer surface of RAG tube specimen. We conducted biaxial stress tests by applying longitudinal tensile load onto RAG tube specimens. It was observed that circumferential total strains at failure under biaxial stress conditions tended to decrease compared to the results under uniaxial tensile condition.
Kaneko, Tetsuji; Tsukatani, Ichiro; Kiuchi, Kiyoshi
JAERI-Research 2005-005, 23 Pages, 2005/03
Fuel elements used in The Reduced-Moderation Water Reactor (RMWR) have the lamellar structure consisting of MOX pellets and UO blankets in order to attain the high breeding ratio and high burn-up simultaneously. It is a characteristic of the fuel elements that there is high thermal stress caused by inhomogeneous linear power density along the longitudinal direction of the fuel rod. Therefore, it is important to evaluate the local deformation behavior due to the transient temperature distribution. To estimate the thermal deformation behavior, the temperature and stress distribution of the fuel cladding tube assumed in the designed reactor were analyzed. Moreover, basic physical properties and mechanical properties for analyzing the deformation behavior were obtained by experiment using fuel cladding tubes made of candidate alloys. In addition, the appropriate experimental conditions for realizing the practical thermal deformation behavior of the fuel cladding tube was selected by adjusting the testing temperature distribution based on data obtained with thermal analysis.
Nagase, Fumihisa; Fuketa, Toyoshi
Journal of Nuclear Science and Technology, 42(1), p.58 - 65, 2005/01
Times Cited Count:53 Percentile:93.89(Nuclear Science & Technology)Tube burst tests have been performed with artificially hydrided Zircaloy-4 specimens at room temperature and at 620 K. Pressurization rate was increased to a maximum of 3.4 GPa/s in order to simulate rapid PCMI that occurs in high burnup fuel rods during a pulse-irradiation in the NSRR. Hydrogen content in the specimens ranged from 150 to 1050 ppm. Hydrides were accumulated in the cladding periphery and formed "hydride rim" as observed in high burnup PWR fuel claddings. The hydrided cladding tubes failed with an axial crack at the room temperature tests. Brittle fracture appeared in the hydride rim, and failure morphology was similar to that observed in the NSRR experiments. The hydrides rim obviously reduced burst pressure and residual hoop strain at the tests. The residual hoop strain was very small even at 620 K when thickness of the hydride rim exceeded 18% of cladding thickness. The present result accordingly indicates an important role of the hydrides layer in high burnup fuel rod failure under RIA conditions.
Kaneko, Tetsuji; Tsukatani, Ichiro; Kiuchi, Kiyoshi
JAERI-Tech 2004-035, 18 Pages, 2004/03
Fuel elements used in the Reduced-Moderation Water Reactor (RMWR) have the stacking structure consisting of MOX pellets and UO blankets in a fuel rod in order to attain the high breeding ratio and high burn-up simultaneously. It is a characteristic of the fuel elements that there is high thermal stress caused by inhomogeneous linear power density along the longitudinal direction of the fuel rod in comparison with the present LWR fuels. For this reason, it is important to estimate local deformation behavior of the fuel cladding tube with temperature difference caused by MOX pellet and UO
blanket. The testing machine was designed to investigate thermal-fatigue behavior under biaxial stress condition. The testing machine consists of the temperature distribution control unit, low cycle fatigue testing unit and internal pressure loading unit, it is also possible to conduct the simulation tests to investigate effects of pressure change with burn-up and longitudinal load change due to operation modes and restriction of fuel rods.