Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 605

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Model updates and performance evaluations on fuel performance code FEMAXI-8 for light water reactor fuel analysis

Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 56(6), p.461 - 470, 2019/06

no abstracts in English

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 1; Overview

Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.

Journal Articles

Investigations of accelerator reliability and decay heat removal for accelerator-driven system

Sugawara, Takanori; Takei, Hayanori; Tsujimoto, Kazufumi

Annals of Nuclear Energy, 125, p.242 - 248, 2019/03

 Percentile:100(Nuclear Science & Technology)

To realize the feasible accelerator-driven system (ADS) concept, the investigations for the reliable accelerator and conceptual plant design considering safety issues were performed. As the reliable accelerator concept, the double-accelerator concept was proposed to reduce the beam-trip frequency. The estimated beam-trip frequency with the double-accelerator concept using the J-PARC LINAC operation data showed that the beam-trip frequency was significantly improved with the comparison of the single accelerator result. The basic investigation of the primary reactor auxiliary coolant system (PRACS) was performed for the safety design of the LBE cooled ADS. The concept which the PRACS heat exchanger was integrated to the steam generator was proposed and the transient analysis in the loss of heat sink accident was carried out. The result presented that the decay heat removal was appropriate when the operation of the PRACS succeeded.

JAEA Reports

Development of fuel performance code FEMAXI-8; Model improvements for light water reactor fuel analysis and systematic validation

Udagawa, Yutaka; Yamauchi, Akihiro*; Kitano, Koji*; Amaya, Masaki

JAEA-Data/Code 2018-016, 79 Pages, 2019/01

JAEA-Data-Code-2018-016.pdf:2.75MB

FEMAXI-8 is the latest version of the fuel performance code FEMAXI developed by JAEA. A systematic validation work has been achieved against 144 irradiation test cases, after many efforts have been made, in development of new models, improvements in existing models and the code structure, bug-fixes, construction of irradiation-tests database and other infrastructures.

Journal Articles

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Impact of number of radial pellet cracks and pellet-clad friction coefficient

Dost$'a$l, M.*; Rossiter, G.*; Dethioux, A.*; Zhang, J.*; Amaya, Masaki; Rozzia, D.*; Williamson, R.*; Kozlowski, T.*; Hill, I.*; Martin, J.-F.*

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10

Journal Articles

ROSA/LSTF test on nitrogen gas behavior during reflux condensation in PWR and RELAP5 code analyses

Takeda, Takeshi; Otsu, Iwao

Mechanical Engineering Journal (Internet), 5(4), p.18-00077_1 - 18-00077_14, 2018/08

Journal Articles

Journal Articles

Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry

Han, M. C.*; Yeom, Y. S.*; Lee, H. S.*; Shin, B.*; Kim, C. H.*; Furuta, Takuya

Physics in Medicine and Biology, 63(9), p.09NT02_1 - 09NT02_9, 2018/05

 Percentile:100(Engineering, Biomedical)

The multi-threading computation performances of the Geant4, MCNP6, and PHITS codes were evaluated using three tetrahedral-mesh phantoms with different complexity. Photon and neutron transport simulations were conducted and the initialization time, calculation time, and memory usage were measured as a function of the number of threads N used in the simulation. The initialization time significantly increases with the complexity of the phantom, but not much with the number of the threads. For the calculation time, Geant4 showed good parallelization efficiency with multi-thread computation (30 times speed-up factor for N = 40) adopting the private tallies while saturation of the speed-up factor were observed in MCNP6 and PHITS (10 and a few times for N = 40) due to the time delay for the sharing tallies. On the other hand, Geant4 requires larger memory specification and the memory usage rapidly increases with the number of threads compared to MCNP6 or PHITS. It is notable that when compared to the other codes, the memory usage of PHITS is much smaller, regardless of both the complexity of the phantom and the number of the threads.

Journal Articles

Implementation of a low-activation Au-In-Cd decoupler into the J-PARC 1 MW short pulsed spallation neutron source

Teshigawara, Makoto; Ikeda, Yujiro; Oi, Motoki; Harada, Masahide; Takada, Hiroshi; Kakishiro, Masanori*; Noguchi, Gaku*; Shimada, Tsubasa*; Seita, Kyoichi*; Murashima, Daisuke*; et al.

Nuclear Materials and Energy (Internet), 14, p.14 - 21, 2018/01

We developed an Au-In-Cd (AuIC) decoupler material to reduce induced radioactivity instead of Ag-In-Cd one, which has a cut off energy of 1eV. In order to implement it into an actual moderator-reflector assembly, a number of critical engineering issues need to be resolved with regard to large-sized bonding between AuIC and A5083 alloys by the hot isostatic pressing process. We investigated this process in terms of the surface conditions, sizes, and heat capacities of large AuIC alloys. We also show a successful implementation of an AuIC decoupler into a reflector assembly, resulting in a remarkable reduction of radioactivity by AuIC compared to AIC without sacrificing neutronic performance.

Journal Articles

Considerations on phenomena scaling for BEPU

Nakamura, Hideo

Proceedings of ANS International Conference on Best Estimate Plus Uncertainties Methods (BEPU 2018) (USB Flash Drive), 8 Pages, 2018/00

no abstracts in English

Journal Articles

Journal Articles

RELAP5 uncertainty evaluation using ROSA/LSTF test data on PWR 17% cold leg intermediate-break LOCA with single-failure ECCS

Takeda, Takeshi; Otsu, Iwao

Annals of Nuclear Energy, 109, p.9 - 21, 2017/11

 Times Cited Count:1 Percentile:64.68(Nuclear Science & Technology)

Journal Articles

Journal Articles

ROSA/LSTF test on nitrogen gas behavior during reflux cooling in PWR and RELAP5 post-test analysis

Takeda, Takeshi; Otsu, Iwao

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 11 Pages, 2017/07

Journal Articles

Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

Furuta, Takuya; Sato, Tatsuhiko; Han, M. C.*; Yeom, Y. S.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*

Physics in Medicine and Biology, 62(12), p.4798 - 4810, 2017/06

 Times Cited Count:4 Percentile:35.05(Engineering, Biomedical)

A new function to treat tetrahedral-mesh geometry, a type of polygon-mesh geometry, was implemented in the Particle and Heavy Ion Transport code Systems (PHITS). Tetrahedral-mesh is suitable to describe complex geometry including curving shapes. In addition, construction of three-dimensional geometry using CAD software becomes possible with file format conversion. We have introduced a function to create decomposition maps of tetrahedral-mesh objects at the initial process so that the computational time for transport process can be reduced. Owing to this function, transport calculation in tetrahedral-mesh geometry can be as fast as that for the geometry in voxel-mesh with the same number of meshes. Due to adaptability of tetrahedrons in size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with much fewer number of meshes compared with the voxels. For dosimetric calculation using computational human phantom, significant acceleration of the computational speed, about 4 times, was confirmed by adopting the tetrahedral mesh instead of the voxel.

Journal Articles

MPI/OpenMP hybrid parallelization of a Monte Carlo neutron/photon transport code MVP

Nagaya, Yasunobu; Adachi, Masaaki*

Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017) (USB Flash Drive), 6 Pages, 2017/04

MVP is a general-purpose Monte Carlo code for neutron and photon transport calculations based on the continuous-energy method. To speed up the MVP code, hybrid parallelization is applied with a message passing interface library MPI and a shared-memory multiprocessing library OpenMP. The performance test has been done for an eigenvalue calculation of a fast reactor subassembly, a fixed-source calculation of a neutron/photon coupled problem and a PWR full core model. Comparisons has been made for MPI only with 4 processes and hybrid parallelism with 4 processes $$times$$ 3 threads. As a result, the hybrid parallelism yields the reduction of elapsed time by 16% to 34% and the used memories are almost the same.

JAEA Reports

Development of fuel temperature calculation code "FTCC" for high temperature gas-cooled reactors

Inaba, Yoshitomo; Isaka, Kazuyoshi; Shibata, Taiju

JAEA-Data/Code 2017-002, 74 Pages, 2017/03

JAEA-Data-Code-2017-002.pdf:2.36MB

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as core geometry and specifications, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code, named FTCC, which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This report describes the calculation objects and models, the basic equations, the strong points (improvement points from the HTTR design code), the code structure, the using method of FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for high temperature gas-cooled reactors. In addition, the effect of hot spot factors and fuel cooling forms on reducing the maximum fuel temperature is investigated with FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-018, 421 Pages, 2017/03

JAEA-Data-Code-2016-018.pdf:3.89MB
JAEA-Data-Code-2016-018-appendix(CD-ROM).zip:4.02MB
JAEA-Data-Code-2016-018-hyperlink.zip:1.94MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

Journal Articles

Development of fuel temperature calculation code for HTGRs

Inaba, Yoshitomo; Nishihara, Tetsuo

Annals of Nuclear Energy, 101, p.383 - 389, 2017/03

 Percentile:100(Nuclear Science & Technology)

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as thermal power, core geometry, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code named FTCC which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This paper describes calculation objects and models, basic equations, improvement points from the HTTR design code in FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for HTGRs. In addition, the effect of cooling forms on the maximum fuel temperature is investigated by using FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

605 (Records 1-20 displayed on this page)