Refine your search:     
Report No.
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Conceptual design study of a high performance commercial HTGR for early introduction

Fukaya, Yuji; Mizuta, Naoki; Goto, Minoru; Ohashi, Hirofumi; Yan, X. L.

Nuclear Engineering and Design, 361, p.110577_1 - 110577_6, 2020/05

 Times Cited Count:1 Percentile:24.17(Nuclear Science & Technology)

Conceptual design study of a commercial High Temperature Gas-cooled Reactor (HTGR) for early introduction has been performed based on the cumulated experience in design, construction, and operation of the High Temperature engineering Test Reactor (HTTR) and design of the commercial Gas Turbine High Temperature Reactor 300 (GTHTR300). The power output is 165 MWt and the inlet and outlet coolant temperatures are 325$$^{circ}$$C and 750$$^{circ}$$C, respectively, to provide steam for industrial utilization. However, given a requirement for the reactor pressure vessel to be smaller even that of the 30 MWt HTTR, several challenging technical problems have to be dealt with to arrive in a high performance core design that provides extended fuel burnup, prolonged refueling period, improved fuel refueling scheme, improved fuel element and so on from the HTTR.

JAEA Reports

Evaluation items to attain safety requirements in fuel and core designs for commercial HTGRs

Nakagawa, Shigeaki; Sato, Hiroyuki; Fukaya, Yuji; Tokuhara, Kazumi; Ohashi, Hirofumi

JAEA-Technology 2017-022, 32 Pages, 2017/09


As for the design of commercial HTGRs, the fuel design, core design, reactor coolant system design, secondary helium system design, decay heat removal system design and confinement system design are very important and quite different from those of LWRs. To contribute the establishment of the safety standards for commercial HTGRs, the evaluation items to attain safety requirements in fuel and core designs were studied. In this study, the excellence features of HTGRs based on passive safety or inherent safety were fully reflected. Additionally, concerning the core design, the stability to spatial power oscillation in reactor core of HTGR was studied. The evaluation items as the result of the study are applicable to the safety design of commercial HTGRs in the future.

2 (Records 1-2 displayed on this page)
  • 1