Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Metcalfe, R.*; Tachi, Yukio; Sasao, Eiji; Kawama, Daisuke*
Science of the Total Environment, 957, p.177375_1 - 177375_17, 2024/12
A safety case for an underground radioactive waste repository must show that groundwater will not in future transport radionuclides from the repository to the near-surface environment (the biosphere) in harmful quantities. Safety cases are developed step-wise throughout a programme to site and develop a repository. At early stages, before a site is selected, safety cases are generic and based on simplified safety assessment models of the disposal system that have conservative parameter values. Later, when site-specific conditions are known, more realistic models are needed for the long-term geo-environmental evolution and their impacts on radionuclide migration/retention. Uplift is one such environmental change, which may be particularly important in countries near active tectonic plate boundaries, such as Japan. Here we review the state of knowledge about how the properties of fractured granitic rocks evolve during uplift, based on studies in Japan. Hence, we present conceptual models and a generic scenario for mass transport and retardation processes in uplifting granitic rocks as a basis for realistic numerical models to underpin safety assessment.
Takeda, Seiji; Kimura, Hideo
JAERI-Research 2002-014, 20 Pages, 2002/07
no abstracts in English