Refine your search:     
Report No.
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Reactor internals design

Sumita, Junya; Ishihara, Masahiro; Nakagawa, Shigeaki; Kikuchi, Takayuki; Iyoku, Tatsuo

Nuclear Engineering and Design, 233(1-3), p.81 - 88, 2004/10

 Times Cited Count:4 Percentile:30.82(Nuclear Science & Technology)

A High Temperature Gas-cooled Reactor is particularly attractive due to its capability of producing high temperature helium gas and its possibility to exploit inherent safety characteristic. To achieve high temperature helium-gas, reactor internals are made of graphite and heat resistant materials, its surroundings are composed of metals. The reactor internals of the HTTR consist of graphite and metallic core support structures and shielding blocks. This paper describes the reactor internal design of the HTTR, especially the core support graphite structures, and the program of an in-service inspection.

JAEA Reports

Cause and countermeasure for heat up of HTTR core support plate at power rise tests

Fujimoto, Nozomu; Takada, Eiji*; Nakagawa, Shigeaki; Tachibana, Yukio; Kawasaki, Kozo; Saikusa, Akio; Kojima, Takao; Iyoku, Tatsuo

JAERI-Tech 2001-090, 69 Pages, 2002/01


HTTR has carried out many kinds of tests as power rise tests in which reactor power rises step by step after attained the first criticality. In the tests, temperature of a core support plate showed higher results than expected value at each power level, the temperature was expected to be higher than the maximum working temperature at 100% power level. Therefore, tests under the high temperature test operation mode, in which the core flow rate was different, were carried out to predict the temperature at 100% power precisely, and investigate the cause of the temperature rise. From the investigation, it was clear that the cause was gap flow in a core support structure. Furthermore, it was estimated that the temperature of the core support plate rose locally due to change in gap width between the core support plate and a seal plate due to change in core pressure drop. The maximum working temperature of the core support plate was revised. The integrity of core support plate under the revised maximum working temperature condition was confirmed by stress analyses.

JAEA Reports

Study on residual radioactive inventory estimation in reactor decommissioning program (Contract research)

Sukegawa, Takenori; Hatakeyama, Mutsuo; Yanagihara, Satoshi

JAERI-Tech 2001-058, 81 Pages, 2001/09


In general, neutron transport and activation calculation codes are used for residual radioactive inventory estimation; however, it is essential to verify calculations by measurement results because of geometrical complexity of the reactor and so on. The comparison between measured and calculated radioactivity in the JPDR core components showed a relatively good agreement (factor of 2), and it was cleared that water content and weight ratio of steel bars to concrete materials significantly influenced the neutron flux distribution in the biological shield (factor of 2-10 error). The measured radioactivity inside of the reactor pressure vessel wall and at the inner part of the biological shield was compared in detail with the calculations to verify the methodology applied to calculations of radioisotope production. Then it was found that the radioactive inventory could be estimated accurately with combination of calculations and measurement of radioactivity in samples and dose rate distribution for planning of dismantling activities.

3 (Records 1-3 displayed on this page)
  • 1