Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hori, Junichi; Maekawa, Fujio; Wada, Masayuki*; Ochiai, Kentaro; Yamauchi, Michinori*; Morimoto, Yuichi*; Terada, Yasuaki; Klix, A.; Nishitani, Takeo
Fusion Engineering and Design, 63-64, p.271 - 276, 2002/12
Times Cited Count:2 Percentile:16.32(Nuclear Science & Technology)In order to the waste management method and the safety design of future D-T fusion reactor, it is important to consider the radioactivity productions via not only primary neutron reactions but also sequential charged particle reactions (SCPR). Especially, on the surface of a coolant channel many recoiled protons are generated by the neutron irradiation with coolant water, so it is apprehensive that the undesirable radioactive nuclide production yields via SCPR are enhanced. In this work, the laminated sample pieces of fusion material foils (V, Fe, W, Ti, Pb, Cu) were made and attached on a polyethylene board to simulate water flowing inside a coolant channel. They were irradiated with D-T neutrons. The effective radioactivity cross section and the depth distribution of the radioactivity production yields due to SCPR were obtained for each material. On the other hand, the estimated values were compared with the experimental ones.
;
JAERI-Tech 97-029, 47 Pages, 1997/07
no abstracts in English
Otani, Kyohei
no journal, ,
This is a comprehensive paper of the corrosion of carbon steel in air/solution alternating condition. From cross-sectional observation and analysis of the iron rust layer formed on the surface of carbon steel in the alternating condition, it was found that a multilayered iron rust layer composed of red rust layer, rust crust layer, inner crystal, and inner rust layer was formed on carbon steel. The multi-layered iron rust layer would accelerate the cathodic oxygen reduction reaction, and the reason why the corrosion rate of the carbon steel in the alternating condition was accelerated. The effect of artificial seawater (ASW) composition on the corrosion rate of carbon steel in air/solution alternating condition was investigated. It was found that the corrosion rate increased with increasing concentration from pure water to 200 times diluted ASW, and decreased with increasing concentration from 20 times diluted ASW to no diluted ASW. The Mg and Ca ions in ASW precipitated on the reaction interface and formed a metal cation layer, which inhibited the oxygen reduction reaction, and thus the corrosion of carbon steel was inhibited in the highly concentrated ASW. This is a commemorative lecture for the awarding of the Progress Award by the Japan Society of Corrosion Engineering.