Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hayakawa, Satoshi*; Hagiwara, Hiroyuki*; Imamura, Akira*; Onoda, Yuichi; Tanaka, Masaaki; Nakamura, Hironori*
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 8 Pages, 2024/11
In a sodium-cooled fast reactor, a cover gas region filled with argon gas is located above the sodium pool in the main vessel to prevent the hot sodium from contacting the structures. This region involves heat transportation by natural convection of the cover gas, radiation among liquid surface and structures, and sodium phase change between mist and vapor. In this study, the numerical evaluation method has been developed with a commercial CFD code, Fluent, incorporating the sodium mist transport and growth models, and the radiation scattering model. Simulations of a laboratory scale test with a cylindrical cover gas region was carried out for the validation of the method and showed that the temperature distribution and sodium mist concentration in the cover gas region are in good agreements with the test results. A simulation of a pool-type sodium cooled fast reactor has also conducted and the basic aspect of physical phenomena taking place in the cover gas region were evaluated.
Ohira, Hiroaki*; Tanaka, Masaaki; Yoshikawa, Ryuji; Ezure, Toshiki
Annals of Nuclear Energy, 172, p.109075_1 - 109075_10, 2022/07
Times Cited Count:1 Percentile:16.36(Nuclear Science & Technology)In order to evaluate the mist behavior in the cover gas region of Sodium-cooled Fast Reactors (SFRs) in good accuracy, turbulent model for Rayleigh-Bnard convection (RBC) was selected, and the Reynolds-averaged number density and momentum equations for mist behavior were developed and incorporated into the OpenFOAM code. In the first stage, the RBC in a simple parallel channel was calculated using Favre-averaged k-
SST model. The average temperature and flow characteristics agreed well with results from DNS, LES, and experiments. Then the basic heat transfer experiment simulating the cover gas region of SFRs was calculated using this turbulent model and new mist models. The calculated average temperature distribution in the height direction and the mist mass concentration agreed well with the experimental results. We developed a method that could simulate the mist behavior in turbulent RBC environments and the cover gas region of SFRs with high accuracy.
Takeda, Takeshi
JAEA-Data/Code 2015-022, 58 Pages, 2016/01
The SB-HL-12 test simulated PWR 1% hot leg SBLOCA under assumptions of total failure of HPI system and non-condensable gas (nitrogen gas) inflow. SG depressurization by fully opening relief valves in both SGs as AM action was initiated immediately after maximum fuel rod surface temperature reached 600 K. After AM action due to first core uncovery by core boil-off, the primary pressure decreased, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before LSC induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after nitrogen gas inflow. Third core uncovery by core boil-off occurred during reflux condensation. The maximum fuel rod surface temperature exceeded 908 K.
Takeda, Takeshi
JAEA-Data/Code 2014-021, 59 Pages, 2014/11
Experiment SB-CL-32 was conducted on May 28, 1996 using the LSTF. The experiment SB-CL-32 simulated 1% cold leg small-break LOCA in PWR under assumptions of total failure of HPI system and no inflow of non-condensable gas from ACC tanks. Secondary-side depressurization of both SGs as AM action to achieve the depressurization rate of 200 K/h in the primary system was initiated 10 min after break. Core uncovery started with liquid level drop in crossover leg downflow-side. The core liquid level recovered rapidly after first LSC. The surface temperature of simulated fuel rod then increased up to 669 K. Core uncovery took place before second LSC induced by steam condensation on ACC coolant. The core liquid level recovered rapidly after second LSC. The maximum fuel rod surface temperature was 772 K. The continuous core cooling was confirmed because of coolant injection by LPI system. This report summarizes the test procedures, conditions and major observation.
Kawamura, Yoshinori; Enoeda, Mikio; Yamanishi, Toshihiko; Nishi, Masataka
Fusion Engineering and Design, 81(1-7), p.809 - 814, 2006/02
Times Cited Count:15 Percentile:67.13(Nuclear Science & Technology)Tritium bred in the solid breeder blanket of a fusion reactor is extracted by passing of a helium sweep gas. Tritium is separated from sweep gas at the blanket tritium recovery system. Palladium membrane diffuser is one of the applicable processes for the blanket tritium recovery system. It is usually applied for hydrogen purification system such as TEP in ITER. However, it has been reported that the rate controlling step changes at lower hydrogen pressure such as the blanket sweep gas condition, and discussion about application for the blanket sweep gas condition is not enough. Recently, conceptual design of the demonstration reactor, named "DEMO2001", has been proposed from JAERI. In this report, the application of the Pd diffuser for the blanket sweep gas condition is discussed based on the condition of DEMO 2001.
Madarame, Haruki*; Okamoto, Koji*; Tanaka, Gentaro*; Morimoto, Yuichiro*; Sato, Akira*; Kondo, Masaya
JAERI-Tech 2003-017, 156 Pages, 2003/03
no abstracts in English
; Kumada, Hiroaki; Kaminaga, Fumito*
Nihon Genshiryoku Gakkai-Shi, 42(4), p.325 - 333, 2000/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
Sato, Daisuke; Yano, Kimihiko; Kitawaki, Shinichi; Sano, Yuichi; Takeuchi, Masayuki
no journal, ,