Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fukuda, Kodai
Annals of Nuclear Energy, 208(1), p.110748_1 - 110748_10, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-013, 48 Pages, 2024/07
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2022. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology, and Nagaoka University of Technology as the second year of three years research project.
Watanabe, Tomoaki; Yamane, Yuichi
Journal of Nuclear Science and Technology, 61(7), p.958 - 966, 2024/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The total fission energy released in a criticality accident involving fissile solution boiling tends to be high because the relatively high fission power continues during boiling. Simulating fission power change correctly during boiling seems essential to estimate the total fission energy. Fission power during boiling changes depending on fissile concentration and volume as the solution evaporates. In this study, we investigated the effect of concentration and volume change on estimated total fission energy for a long time of boiling. We introduced a model calculating the evaporation of fissile solution into the modified quasi-steady-state method to simulate power change during boiling. Three CRAC experiments and the Idaho Chemical Processing Plant (ICPP) criticality accident in 1959 were analyzed. As a result, the calculated energy considering concentration and volume change during boiling reproduced the measured energy well.
Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi; Kanno, Ikuo
Journal of Nuclear Science and Technology, 61(2), p.269 - 276, 2024/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2023-020, 90 Pages, 2023/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted from FY2020 to FY2022. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system with high neutron detection efficiency (a few count/nv) under high gamma ray background (1kGy/h). Developed components are neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies.
Fukuda, Kodai; Yamane, Yuichi
Journal of Nuclear Science and Technology, 60(12), p.1514 - 1525, 2023/12
Times Cited Count:1 Percentile:41.04(Nuclear Science & Technology)This study aims to clarify the effect of fuel particle radius on the criticality transient behavior and the total number of fissions in water-moderated solid fuel dispersion systems. Neutronics/thermal hydraulics-coupled kinetics analysis was performed in a hypothetical fuel debris system, where small fuel particles aggregate in water and become supercritical. Results showed that the number of fissions is 10 times larger when the fuel particle radius is reduced by one order of magnitude under conditions where heat transfer, i.e. from fuel to water, is emphasized. Moreover, there is a possibility that lower reactivity could give a larger number of fissions when the fuel particle size is very small. In addition, the number of fissions may be overestimated or underestimated to an unexpected extent unless appropriate fuel particle size is set on the analysis.
Fukuda, Kodai
Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10
Brief evaluations were performed using the N-F model to quantitatively clarify the effect of thermal expansion on the consequences of criticality accidents in the water-moderated fuel-particle-dispersion system. The analysis clarified that ignoring thermal expansion can lead to underestimation or overestimation of the consequences by several tens of percent. It is concluded that evaluators can ignore the thermal expansion when they evaluate the consequences of the prompt supercritical transient in water-moderated solid fuel-dispersion systems, such as fuel debris systems. Only the Doppler effect can be considered when the fuel-temperature-feedback coefficient is prepared. However, depending on the required accuracy, the evaluators should take care of the error caused by ignoring thermal expansion.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2022-043, 52 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2022-031, 89 Pages, 2022/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2021. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under 1 kGy/h and compact-light-weight to fit constraints of the penetration size and the payload. The project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies …
Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi
Journal of Nuclear Science and Technology, 59(4), p.424 - 430, 2022/04
Times Cited Count:1 Percentile:12.48(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2021-038, 65 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2021-037, 61 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side.
Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*
Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07
The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2020-041, 30 Pages, 2020/12
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.
Yamane, Yuichi; Numata, Yoshiaki*; Tonoike, Kotaro
Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 10 Pages, 2019/09
For the criticality safety of the operation treating the fuel debris in Fukushima Daiichi Nuclear Power Plant, the reactivity effect of its geometrical change has been investigated and the developed procedure has been applied to a trial analysis of a postulated scenario for the purpose of its verification.
Hoshi, Katsuya; Tsujimura, Norio; Yoshida, Tadayoshi; Kurihara, Osamu*; Kim, E.*; Yajima, Kazuaki*
Progress in Nuclear Science and Technology (Internet), 6, p.152 - 155, 2019/01
Shimada, Taro; Takubo, Kazuya*; Takeda, Seiji; Yamaguchi, Tetsuji
Progress in Nuclear Science and Technology (Internet), 5, p.183 - 187, 2018/11
After fuel debris is removed from the reactor containment vessel at Fukushima Daiichi NPS (1F) and collected in waste containers in the future, the waste containers will be disposed at a deep geological repository. The uranium inventory and uranium-235 (U) enrichment of the fuel debris are larger than those of high-level vitrified wastes which are produced from liquid waste during reprocessing of spent nuclear fuels. Therefore, there is a possibility not to be excluded that a criticality occurs in the geological media where the uranium precipitates at the far-field from the repository, after the uranium located in the repository is dissolved by groundwater. In this study, we calculated the quantity of uranium precipitated at the natural barrier, and studied dimension of uranium deposited in the natural barrier and carried out the criticality analysis.
Tashiro, Shinsuke; Abe, Hitoshi
JAEA-Technology 2015-044, 20 Pages, 2016/03
In order to estimate public dose under a criticality accident in fuel solution of a fuel reprocessing plant, release behavior of radioiodine from the fuel solution to atmosphere is very important. In this report, time evolution of I concentration in gas phase of TRACY core tank was measured until the concentration in the solution decreased. Furthermore, cumulative release ratio (CRR) and release rate (RR) from the solution to the atmosphere of radioiodine were evaluated by applying previously-reported evaluation model. As a result, for the case of short transient criticality, RR of I became maximum at 1 hour later from the ending and almost constant after 8 hour later. Furthermore, relationship of each elapsed time between total fission number and release rate of I could be derived. On the other hand, for the case of long criticality excursion, such as JCO criticality accident, the CRR and RR of radioiodine increased monotonously with time.
Tonoike, Kotaro; Yamane, Yuichi; Umeda, Miki; Izawa, Kazuhiko; Sono, Hiroki
Proceedings of International Conference on Nuclear Criticality Safety (ICNC 2015) (DVD-ROM), p.20 - 27, 2015/09
From the viewpoint of safety regulation, criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Station would be a risk-informed control to mitigate consequences of criticality events, instead of a deterministic control to prevent such events. The Nuclear Regulation Authority of Japan has set up a research and development program to tackle this challenge. The Nuclear Safety Research Center of Japan Atomic Energy Agency, commissioned by the authority, has launched activities such as computations of criticality characteristics of the fuel debris, development of criticality risk assessment method, and preparation of criticality experiments to support them.
Sono, Hiroki; Ono, Akio*; Kojima, Takuji; Takahashi, Fumiaki; Yamane, Yoshihiro*
Journal of Nuclear Science and Technology, 43(3), p.276 - 284, 2006/03
Times Cited Count:1 Percentile:9.80(Nuclear Science & Technology)For a study on the applicability of a personal dosimetry method to criticality accident dosimetry, an assessment of the human body surface and internal dose estimations was performed by experimental and computational simulations. The experimental simulation was carried out in a criticality accident situation at the TRACY facility. The neutron and -ray absorbed doses in muscle tissue were separately estimated by a dosimeter set of an alanine dosimeter and a thermoluminescence dosimeter made of enriched lithium tetra borate with a phantom. The computational simulation was conducted with a Monte Carlo code taking account of dose components of neutrons, prompt -rays and delayed -rays. The computational simulation was ascertained to be valid by comparison between the calculated dose distributions in the phantom and the measured ones. The assessment based on the experimental and computational simulations confirmed that the personal dosimetry using the dosimeter set provided a first estimation of the body surface and internal doses with precision.