Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

HM and THM interactions in bentonite engineered barriers for nuclear waste disposal

Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.

International Journal of Rock Mechanics and Mining Sciences, 137, p.104572_1 - 104572_19, 2021/01

 Times Cited Count:3 Percentile:96.18(Engineering, Geological)

Bentonite-based engineered barriers are a key component of many repository designs for the confinement of high-level radioactive waste and spent fuel. Given the complexity and interaction of the phenomena affecting the barrier, coupled hydro-mechanical (HM) and thermo-hydro-mechanical (THM) numerical analyses are a potentially useful tool for a better understanding of their behaviour. In this context, a Task (INBEB) was undertaken to study, using numerical analyses, the hydro-mechanical and thermohydro-mechanical Interactions in Bentonite Engineered Barriers within the international cooperative project DECOVALEX 2019. Two large scale tests, largely complementary, were selected for modelling: EB and FEBEX. The EB experiment was carried out under isothermal conditions and artificial hydration and it was dismantled after 10.7 years. The FEBEX test was a temperature-controlled non-isothermal test combined with natural hydration that underwent two dismantling operations, a partial one after 5 years of heating and a final one after a total of 18.4 years of heating. Direct observation of the state of the barriers was possible during the dismantling operations. Four teams performed the HM and THM numerical analyses using a variety of computer codes, formulations and constitutive laws. For each experiment, the basic features of the analyses are described and the comparison between calculations and field observations are presented and discussed. Comparisons involve measurements performed during the performance of the test and data gathered during dismantling. A final evaluation of the performance of the modelling closes the paper.

Journal Articles

DECOVALEX-2019 Task D; INBEB Final Report

Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.

LBNL-2001267 (Internet), 210 Pages, 2020/10

This document is the final report of Task D of the DECOVALEX-2019 project, presenting the definitions of the problems studied, approaches applied, achievements made and outstanding issues identified for future research. Task D of the DECOVALEX 2019 project is devoted to the study of the hydro-mechanical and thermo-hydro-mechanical Interactions in Bentonite Engineered Barriers. The Task is structured around two large scale in situ experiments that were subjected to well managed dismantling operations that provided direct observations of the state of the barrier after long test periods. Four teams carried out the modelling of the two experiments: Institute of Geonics, of the Czech Academy of Sciences (IGN), supported by SURAO, Czech Republic, Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Central University of Taiwan (NCU), supported by the Taipower.

JAEA Reports

DECOVALEX-2019 Task C; GREET Intermediate report

Iwatsuki, Teruki; Onoe, Hironori; Ishibashi, Masayuki; Ozaki, Yusuke; Wang, Y.*; Hadgu, T.*; Jove-Colon C. F.*; Kalinina, E.*; Hokr, M.*; Balv$'i$n, A.*; et al.

JAEA-Research 2018-018, 140 Pages, 2019/03

JAEA-Research-2018-018.pdf:40.68MB

DECOVALEX-2019 Task C aims to develop modelling and prediction methods using numerical simulation based on the water-filling experiment to examine the post drift-closure environment recovery processes. In this intermediate report, the results of Step 1 (Modelling and prediction of environmental disturbance by CTD excavation) are summarized from each of the research teams (JAEA, Sandia National Laboratories, Technical University of Liberec). Groundwater inflow rates to the tunnel during the excavation, hydraulic drawdown, and variation of chlorine concentration at monitoring boreholes in the vicinity of the tunnel were chosen as comparison metrics for Step1 by mutual agreement amongst the research teams. It is likely to be possible to foresee the scales of inflow rate and hydraulic drawdown based on a data from the pilot borehole by current simulation techniques.

3 (Records 1-3 displayed on this page)
  • 1