Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Marine environmental assessment system of radionuclides around Japan

Kobayashi, Takuya; Togawa, Orihiko

Proceedings from the International Conference on Radioactivity in the Environment (CD-ROM), 4 Pages, 2002/09

A marine environmental assessment system STEAMER is developing for predicting the short-term (30days) dispersion and assessing the collective dose to the Japanese population due to radionuclides released to the ocean. The computer code system for short-term predictions of radionuclide dispersion is a combination of the Princeton Ocean Model (POM) for predicting ocean currents and a particle random walk model SEA-GEARN for oceanic dispersion of dissolved radionuclides. The system has been applied to a hypothetical accident of a nuclear submarine if it sinks in an offshore region around Japan, by using measured currents, temperature, salinity and meteorological regional objective analysis data (RANAL). Another computer code system DSOCEAN is also applied to the same hypothetical accident in order to compare the results of radionuclide dispersion in the ocean and the collective dose to the Japanese population. An equidistant-grid compartment model combined with a model of the geostrophic current analysis is used in DSOCEAN.

Journal Articles

Estimates of collective doses from a hypothetical accident of a nuclear submarine

Kobayashi, Takuya; Togawa, Orihiko; Odano, Naoteru; Ishida, Toshihisa

Journal of Nuclear Science and Technology, 38(8), p.658 - 663, 2001/08

 Times Cited Count:2 Percentile:19.28(Nuclear Science & Technology)

The collective dose to the Japanese population has been estimated from a hypothetical accident of a nuclear submarine if it sinks in an offshore region around Japan. A computer code system DSOCEAN has been used for assessing the collective dose due to radionuclides released to the ocean from a sunken nuclear submarine. The maximum of the estimated collective effective dose equivalent by the annual intake of marine products after radionuclide releases for one year is approximately 0.5% of the annual average dose by the natural radiation that is reported by UNSCEAR.

2 (Records 1-2 displayed on this page)
  • 1