Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Utilizing PUNITA experiments to evaluate fundamental delayed gamma-ray spectroscopy interrogation requirements for nuclear safeguards

Rodriguez, D.; Koizumi, Mitsuo; Rossi, F.; Seya, Michio; Takahashi, Toon; Bogucarska, T.*; Crochemore, J.-M.*; Pedersen, B.*; Takamine, Jun

Journal of Nuclear Science and Technology, 57(8), p.975 - 988, 2020/08

 Times Cited Count:1 Percentile:24.17(Nuclear Science & Technology)

Journal Articles

Model design of a compact delayed gamma-ray moderator system using $$^{252}$$Cf for safeguards verification measurements

Rodriguez, D.; Rossi, F.; Takahashi, Toon; Seya, Michio; Koizumi, Mitsuo

Applied Radiation and Isotopes, 148, p.114 - 125, 2019/06

 Times Cited Count:3 Percentile:20.8(Chemistry, Inorganic & Nuclear)

Journal Articles

Delayed $$gamma$$-ray spectroscopy combined with active neutron interrogation for nuclear security and safeguards

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EPJ Web of Conferences, 146, p.09018_1 - 09018_4, 2017/09

 Times Cited Count:2 Percentile:10.14

Journal Articles

Delayed gamma-ray analysis for characterization of fissile nuclear materials

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EUR-28795-EN (Internet), p.868 - 872, 2017/00

Journal Articles

Development of active neutron NDA techniques for nuclear nonproliferation and nuclear security, 7; Measurement of DG from MOX and Pu liquid samples for quantification and monitoring

Mukai, Yasunobu; Ogawa, Tsuyoshi; Nakamura, Hironobu; Kurita, Tsutomu; Sekine, Megumi; Rodriguez, D.; Takamine, Jun; Koizumi, Mitsuo; Seya, Michio

Proceedings of INMM 57th Annual Meeting (Internet), 7 Pages, 2016/07

The development of Delayed Gamma-ray Spectroscopy (DGS) for analyzing the composition ratio of fissile nuclides ($$^{239}$$Pu, $$^{241}$$Pu, $$^{235}$$U) focused on the Delayed Gamma-ray having energy over 3 MeV has been performed for the development of active neutron non-destructive assay techniques. In PCDF, measurement tests of Delayed Gamma-ray using Pu solution and MOX powder samples to prove the DGS technique is planned to be performed in following 4 stages. (1) Measurements for Delayed Gamma-ray originated from spontaneous fission nuclide (Passive), (2) Measurements for the Delayed Gamma-ray with fast neutron (Active), (3) DGSI (DGS combined with self-interrogation) measurements (Passive), (4) Measurements for the Delayed Gamma-ray with thermal neutron (Active) In this paper, the plan of measurement tests for nuclear material samples with use of DGS is presented.

Journal Articles

Assessment of human body surface and internal dose estimations in criticality accidents based on experimental and computational simulations

Sono, Hiroki; Ono, Akio*; Kojima, Takuji; Takahashi, Fumiaki; Yamane, Yoshihiro*

Journal of Nuclear Science and Technology, 43(3), p.276 - 284, 2006/03

 Times Cited Count:1 Percentile:89.16(Nuclear Science & Technology)

For a study on the applicability of a personal dosimetry method to criticality accident dosimetry, an assessment of the human body surface and internal dose estimations was performed by experimental and computational simulations. The experimental simulation was carried out in a criticality accident situation at the TRACY facility. The neutron and $$gamma$$-ray absorbed doses in muscle tissue were separately estimated by a dosimeter set of an alanine dosimeter and a thermoluminescence dosimeter made of enriched lithium tetra borate with a phantom. The computational simulation was conducted with a Monte Carlo code taking account of dose components of neutrons, prompt $$gamma$$-rays and delayed $$gamma$$-rays. The computational simulation was ascertained to be valid by comparison between the calculated dose distributions in the phantom and the measured ones. The assessment based on the experimental and computational simulations confirmed that the personal dosimetry using the dosimeter set provided a first estimation of the body surface and internal doses with precision.

Oral presentation

Using an inverse Monte Carlo method to determine measurement uncertainties

Rodriguez, D.

no journal, , 

With the improvement of technology, safeguards verifications must consider how to declare precise uncertainties, especially for new non-destructive assay techniques. For our delayed $$gamma$$-ray spectroscopy technique, we are utilizing the inverse Monte Carlo analysis method. Systematic uncertainties are determined by analyzing full Monte Carlo spectra using the same analysis applied to the data. Preliminary results will be presented at this workshop.

7 (Records 1-7 displayed on this page)
  • 1