Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wakui, Takashi; Takagishi, Yoichi*; Futakawa, Masatoshi
Materials, 16(17), p.5830_1 - 5830_16, 2023/09
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Cavitation damage on the mercury target vessel is induced by proton beam injection in mercury. The prediction method of the cavitation damage using Monte Carlo simulations was proposed taking into account of the uncertainties of the position of cavitation bubbles and impact pressure distributions. The distribution of impact pressure attributed to individual cavitation bubble collapsing was assumed to be the Gaussian distribution, and the probability distribution of the maximum value of impact pressures was assumed to be three kinds of distributions; the delta function, the Gaussian and Weibull distributions. Two parameters were estimated using Bayesian optimization by comparing the distribution of the cavitation damage obtained from experiment with that of accumulated plastic strain obtained from the simulation. It was found that the results obtained using the Weibull distribution reproduced the actual cavitation erosion phenomenon better than the other results.
Ueki, Taro
Proceedings of International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C 2019) (CD-ROM), p.151 - 160, 2019/00
A dynamical system under extreme physical disorder has the tendency of evolving toward the equilibrium state characterized by an inverse power law spectrum. In this paper, the author proposes a practically implementable modeling of random media under such a spectrum using a randomized form of the Weierstrass function. The proposed modeling is demonstrated by the continuous energy Monte Carlo particle transport with delta tracking for the criticality calculation of a randomized version of the Topsy spherical core in International Criticality Safety Benchmark Evaluation Project.