Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Nishihara, Kenji; Saito, Shigeru; Mizumoto, Motoharu; Takano, Hideki*; et al.
Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.325 - 334, 2005/11
The Japan Atomic Energy Research Institute (JAERI) is conducting the research and development (R&D) on the Accelerator-Driven Subcritical System (ADS) for the effective transmutation of minor actinides (MAs). The ADS proposed by JAERI is the 800 MWth, Pb-Bi cooled, tank-type subcritical reactor loaded with (MA+Pu) nitride fuel. The Pb-Bi is also used as the spallation target. In this study, the feasibility of the ADS was discussed with putting the focus on the design around the beam window. The partition wall was placed between the target region and the ductless-type fuel assemblies to keep the good cooling performance for the hot-spot fuel pin. The flow control nozzle was installed to cool the beam window effectively. The thermal-hydraulic analysis showed that the maximum temperature at the outer surface of the beam window could be repressed below 500 C even in the case of the maximum beam power of 30 MW. The stress caused by the external pressure and the temperature distribution of the beam window was also below the allowable limit.
Teraoku, Takuji*; Terada, Atsuhiko*; Maekawa, Fujio; Meigo, Shinichiro; Kaminaga, Masanori; Ishikura, Shuichi*; Hino, Ryutaro
JAERI-Tech 2003-026, 77 Pages, 2003/03
A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK Proton Accelerator Project(J-PARC). The proton beam window functions as a boundary wall between a high vacuum area and a helium atmosphere and it is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows, flat-type and curved-type. We evaluated the strength of structure and thermal hydraulic analysis. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and the stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible.
Kugo, Teruhiko; Nakakawa, Masayuki
JAERI-Data/Code 2000-004, p.97 - 0, 2000/02
no abstracts in English
Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio
Proceedings of International Workshop on Current Status and Future Directions in Boiling Heat Transfer and Two-Phase Flow, p.135 - 141, 2000/00
no abstracts in English
Kugo, Teruhiko; Nakagawa, Masayuki
Journal of Nuclear Science and Technology, 36(4), p.332 - 343, 1999/04
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)no abstracts in English
Kugo, Teruhiko; Nakagawa, Masayuki
Proc. of Int. Conf. on the Phys. of Nucl. Sci. and Technol., 1, p.704 - 711, 1998/00
no abstracts in English
Kugo, Teruhiko; Nakagawa, Masayuki;
Journal of Nuclear Science and Technology, 34(8), p.760 - 770, 1997/08
Times Cited Count:2 Percentile:22.87(Nuclear Science & Technology)no abstracts in English
Kugo, Teruhiko; Nakagawa, Masayuki
PHYSOR 96: Int. Conf. on the Physics of Reactors, 1, p.B73 - B81, 1996/00
no abstracts in English
Kugo, Teruhiko; Nakagawa, Masayuki
Transactions of the American Nuclear Society, 73, p.207 - 208, 1995/00
no abstracts in English
Kugo, Teruhiko; Fujii, Sadao*; Nakagawa, Masayuki
JAERI-Data/Code 94-001, 187 Pages, 1994/08
no abstracts in English