Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of hydrocarbons on the efficiency of catalytic reactor of detritiation system in an event of fire

Edao, Yuki; Sato, Katsumi; Iwai, Yasunori; Hayashi, Takumi

Journal of Nuclear Science and Technology, 53(11), p.1831 - 1838, 2016/11

 Times Cited Count:3 Percentile:57.25(Nuclear Science & Technology)

Journal Articles

Design of the ITER tritium plant, confinement and detritiation facilities

Yoshida, Hiroshi; Glugla, M.*; Hayashi, Takumi; L$"a$sser, R.*; Murdoch, D.*; Nishi, Masataka; Haange, R.*

Fusion Engineering and Design, 61-62, p.513 - 523, 2002/11

 Times Cited Count:22 Percentile:18.33

ITER tritium plant is composed of tokamak fuel cycle systems, tritium confinement and detritation systems. The tokamak fuel cycle systems, composed of various tritium sumsystems such as vacuum vessel cleaning gas processing, tokamak exhaust processing, hydrogen isotope separation, fuel storage, mixing and delivery, and external tritium receiving and long-term storage, has been designed to meet not only ITER operation scenarios but safety requirements (minimization of equipment tritium inventory and reduction of environmental tritium release at different off-normal events and accident scenarios). Multiple confinement design was employed because tritium easily permeates through metals (at $$>$$ 150 $$^{circ}$$C) and plastics (at ambient temperature) and mixed with moisture in room air. That is, tritium process equipment and piping are designed to be the primary confinement barrier, and the process equipments (tritium inventory $$>$$ 1 g) are surrounded by the secondary confinement barrier such as a glovebox. Tritium process rooms, which contains these facilities, form the tertiary confinement barrier, and equipped with emergency isolation valves in the heating ventillation and air conditioning ducts as well as atmosphere detritiation systems. This confinement approach has been applied to tokamak building, tritium building, and hotcell and radwaste building.

2 (Records 1-2 displayed on this page)
  • 1