Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Thwe Thwe, A.; Kadowaki, Satoshi; Hino, Ryutaro
Journal of Thermal Science and Technology (Internet), 13(2), p.18-00457_1 - 18-00457_12, 2018/12
Times Cited Count:0 Percentile:0.00(Thermodynamics)Two dimensional unsteady calculations of reactive flows were performed in large domain to investigate the unstable behaviors of cellular premixed flames at low Lewis numbers based on the diffusive-thermal (D-T) model and compressible Navier-Stokes (N-S) equations. The growth rates obtained by the compressible N-S equations were large and the unstable ranges were wide compared with those obtained by the D-T model equations. When the length of computational domain increased, the number of small cells separated from large cells of the cellular flame increased drastically. The stronger unstable behaviors and the larger average burning velocities were observed especially in the numerical results based on the compressible N-S equations. In addition, the fractal dimension obtained by the compressible N-S equations was larger than that by the D-T model equations. Moreover, we confirmed that the radiative heat loss promoted the instability of premixed flames at low Lewis numbers.