Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 36

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 4; Proton beam technology and neutronics

Meigo, Shinichiro; Nakano, Keita; Iwamoto, Hiroki

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.216 - 221, 2022/05

For the realization of accelerator-driven transmutation systems (ADS) and the construction of the ADS target test facility (TEF-T) at J-PARC, it is necessary to study the proton beam handling technology and neutronics for protons in the GeV energy region. Accordingly, the Nuclear Transmutation Division of J-PARC has studied these issues with using J-PARC's accelerator facilities, and so on. This paper introduces these topics.

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03


Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

JAEA Reports

Long-term monitoring of the stability of the gallery in Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Miyara, Nobukatsu; Sugita, Yutaka

JAEA-Research 2020-004, 68 Pages, 2020/06


In construction and operational phase of a high-level radioactive waste disposal project, it is necessary to monitor on mechanical stability of underground facility for long term. In this research, we measured the displacement of the rock around the gallery and the stress acting on support materials. Furthermore, we investigated the durability of measurement sensor installed in the rock mass and the support material such as concreate lining and steel support. As a result, optical fiber sensor is appropriate for measurement of the displacement of rock mass around the gallery, while it is enough to apply the conventional electric sensor for the measurement of stress acting on the support material in the geological environment (soft rock and low inflow). The result of the measurement in the fault zone in 350 m gallery, show that the stresses acting on both shotcrete and steel arch lib exceeded the value which will cause the instability of the gallery. However, as, we found no crack on the surface of the shotcrete. By observation on the surface of shotcrete, thus, it was concluded that careful observation of shotcrete around that section in addition to the monitoring the measured stress was necessary to continue. In other measurement sections, there was no risk for the instability of the gallery as a result of the investigation of the measurement result.

JAEA Reports

Poro-elastic parameter acquisition test using siliceous mudstone (Wakkanai formation)

Aoki, Tomoyuki*; Tani, Takuya*; Sakai, Kazuo*; Koga, Yoshihisa*; Aoyagi, Kazuhei; Ishii, Eiichi

JAEA-Research 2020-002, 83 Pages, 2020/06


The Japan Atomic Energy Agency (JAEA) has conducted with the Horonobe Underground Research Project in Horonobe, Teshio-gun, Hokkaido for the purpose of research and development related to geological disposal technology for high-level radioactive wastes in sedimentary soft rocks. The geology around the Horonobe Underground Research Laboratory (HURL) is composed of the Koetoi diatomaceous mudstone layer and the Wakkanai siliceous layer, both of which contain a large amount of diatom fossils. Since these rocks exhibit relatively high porosity but low permeability, it is important to investigate the poro-elastic characteristics of the rock mass. For this objective, it is necessary to measure parameters based on the poro-elastic theory. However, there are few measurement results of the poro-elastic parameters for the geology around HURL, and the characteristics such as dependence on confining pressure are not clearly understood. One of the reasons is that the rocks show low permeability and the pressure control during testing is difficult. Therefore, a poro-elastic parameter measurement test was conducted on the siliceous mudstone of the Wakkanai formation to accumulate measurement results on the poro-elastic parameters and to examine the dependence of the parameters on confining pressure. As a result, some dependency of the poro-elastic parameters on confining pressure was observed. Among the measured or calculated poro-elastic parameters, the drained bulk modulus increased, while the Skempton's pressure coefficient, and the Biot-Wills coefficient in the elastic region decreased with the increase in confining pressure. The measurement results also inferred that the foliation observed in the rock specimens might impact a degree of dependency of those parameters on confining pressure.

Journal Articles

Analysis of the direction of plasma vertical movement during major disruptions in ITER

Lukash, V.*; Sugihara, Masayoshi; Gribov, Y.*; Fujieda, Hirobumi*

Plasma Physics and Controlled Fusion, 47(12), p.2077 - 2086, 2005/12

 Times Cited Count:8 Percentile:29.48(Physics, Fluids & Plasmas)

Vertical directions of plasma movement after the thermal quench (TQ) of major disruptions in ITER are investigated using the predictive mode of the DINA code. Three dominant parameters in determining the direction of plasma movement are identified; (1) the rate of plasma current quench, (2) change of the internal plasma inductance li associated with the TQ and (3) the initial vertical position of plasma column before the TQ. It is shown that the reference ITER plasma moves upward after the TQ, if the current quench rate is higher than 200kA/ms and the drop of li does not exceed 0.2 for the present reference initial vertical position (55.5 cm above the center of machine).

JAEA Reports

Rationalization and utilization of double-wall vacuum vessel for tokamak fusion facility

Nakahira, Masataka

JAERI-Research 2005-030, 182 Pages, 2005/09


It is difficult for Vacuum Vessel (VV) of ITER to apply a non-destructive in-service inspection (ISI) and then new safety concept is needed. Present fabrication standards are not applicable to the VV, because the access is limited to the backside of closure weld of double wall. Fabrication tolerance of VV is $$pm$$5mm even the structure is huge as high as 10m. This accuracy requires a rational method on the estimation of welding deformation. In this report, an inherent safety feature of the tokamak is proved closing up a special characteristic of termination of fusion reaction due to tiny water leak. A rational concept not to require ISI without sacrificing safety is shown based on this result. A partial penetration T-welded joint is proposed to establish a rational fabrication method of double wall. Strength and susceptibility to crevice corrosion is evaluated for this joint and feasibility is confirmed. A rational method of estimation of welding deformation for large and complex structure is proposed and the efficiency is shown by comparing analysis experimental results of full-scale test.

JAEA Reports

Rod displacement measurements by X-ray CT and its impact on thermal-hydraulics in tight-lattice rod bundle (Joint research)

Mitsutake, Toru*; Katsuyama, Kozo*; Misawa, Takeharu; Nagamine, Tsuyoshi*; Kureta, Masatoshi*; Matsumoto, Shinichiro*; Akimoto, Hajime

JAERI-Tech 2005-034, 55 Pages, 2005/06


In tight-lattice bundles with about 1mm gap between rods, a rod displacement might affect thermal-hydraulic characteristics. The inside-structure observation of the simulated seven-rod bundle of RMWR was made with the high-energy X-ray CT of JNC. The CT view assured that the rod position was almost the same as expected by design. In the heat transfer experiments, all thermocouples on the center rod showed almost simultaneous BT-induced temperature increase and on the same axial heights showed quite similar time-variation behaviors in the vapor cooling heat transfer regime. It showed that the effect of the geometrical asymmetry was small on the BT characteristics. The calculated critical power by subchannel analysis with the input of the CT measured rod position was smaller by about 5% than that with the designed rod position. It concluded that the error in the calculated critical power was attributable not to the asymmetry in the rod position, but to the models in the subchannel analysis code.

Journal Articles

Rod displacement effect on thermal-hydraulic behaviour in tight-lattice bundle based on X-ray CT measurement

Mitsutake, Toru*; Akimoto, Hajime; Misawa, Takeharu; Kureta, Masatoshi*; Katsuyama, Kozo*; Nagamine, Tsuyoshi*; Matsumoto, Shinichiro*

Proceedings of 4th World Congress on Industrial Process Tomography, Vol.1, p.348 - 353, 2005/00

An inside-structure observation of a tight-lattice 7-rod bundle was made, using the high-energy X-ray computer tomography(CT) apparatus. The two-dimensional configurations of all rods were obtained at seventy-six axial height positions over the whole length of the bundle. The measured results of the rod positions showed small rod position displacements, about 0.5 millimeters at maximum, from the lattice positions. Based on these measured rod position displacement results, the flow area, equivalent hydraulic diameter, rod-rod clearance, and rod-shroud clearance were calculated. The effect of rod position displacement on critical power was estimated by a sub-channel analysis. The result showed that the rod position displacement effect has only a small effect on critical power calculations. The calculated critical power still overestimated the measured value.

Journal Articles

Assessments of crack length-water leak correlation on ITER vacuum vessel and inherent safety of Tokamak-type fusion machine

Nakahira, Masataka; Shibui, Masanao*

Nihon Kikai Gakkai Dai-9-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, No.04-2, p.267 - 272, 2004/06

A small water leak can cause a plasma disruption in a tokamak-type fusion machine. This plasma disruption will induce electromagnetic (EM) force acting in the vacuum vessel that is a physical barrier of tritium and activated dust. If the VV can sustain an unstable fracture by the EM force, the structural safety will be assured and the inherent safety will be demonstrated. Therefore, a new analytical model to evaluate the through crack and leak rate of cooling water is proposed, with verification by experimental leak measurements. Based on the analysis, the critical crack length to terminate plasma in ITER is evaluated as about 2 mm. On the other hand, the critical crack length for unstable fracture is obtained as about 400 mm. It is concluded that EM forces induced by the small leak to terminate plasma will not cause unstable fracture of the VV; thus the inherent safety is demonstrated.

Journal Articles

Structural safety assessment of a tokamak-type fusion facility for a through crack to cause cooling water leakage and plasma disruption

Nakahira, Masataka

Journal of Nuclear Science and Technology, 41(2), p.226 - 234, 2004/02

 Times Cited Count:1 Percentile:10.35(Nuclear Science & Technology)

A tokamak-type fusion machine is said to have inherent safety associated with plasma shutdown. A small leak of water can terminate the plasma safely and can cause a plasma disruption which will induce electromagnetic(EM) forces in the vacuum vessel (VV). From a radiological safety view point, the VV forms the physical barrier that encloses tritium and activated dust. If the VV can sustain an unstable fracture by EM forces from a through crack to cause the leak, the structural safety will be assured and the inherent safety will be demonstrated. Therefore, a systematic approach to assure the structural safety is developed. A new analytical model to evaluate the through crack and leak is proposed, with verification by experiment. Based on the analyses, the critical crack length to terminate plasma is evaluated as about 2 mm, and the critical crack length for unstable fracture is obtained as about 400 mm. It is therefore concluded that EM forces induced by small leak to terminate plasma will not cause the unstable fracture of VV, and then the inherent safety is demonstrated.

Journal Articles

Analysis of end-of-life performance for proton-irradiated triple-junction space solar cell

Sumita, Taishi*; Imaizumi, Mitsuru*; Matsuda, Sumio*; Oshima, Takeshi; Oi, Akihiko; Kamiya, Tomihiro

Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (WCPEC-3) (CD-ROM), 4 Pages, 2004/01

While high beginning-of-life efficiencies are important for space solar cells, the end-of-life performance is also critical factor. Two different prediction methods, "relative damage dose" and "displacement damage dose" methods, based on analysis of ground radiation test have been produced. We report proton radiation response for triple-junction space solar cells and analyze prediction methodology for the cell radiation response using the two methods. The results show that V$$_{OC}$$ degradation behavior can be predicted by taking into account a cell structure and proton penetration depth. Accurate prediction of power degradation, however, is required to determine the current-limiting sub cell after proton irradiations.

JAEA Reports

Applicability of LBB concept to tokamak-type fusion machine

Nakahira, Masataka

JAERI-Tech 2003-087, 28 Pages, 2003/12


A tokamak-type fusion machine has been characterized as having inherent plasma shutdown safety. An extremely small leakage of cooling water will cause a plasma disruption. This plasma disruption will induce electromagnetic forces (EM forces) acting in the vacuum vessel (VV) which forms the physical barrier enclosing tritium and activated dust. If the VV has the possibility of sustaining an unstable fracture from a penetrating crack caused by EM forces, the structural safety will be assured and the inherent safety will be demonstrated. This paper analytically assures the Leak-Before-Break (LBB) concept as applied to the VV and is based on experimental leak rate data of a through crack having a very small opening. Based on the analysis, the critical crack length to terminate plasma is evaluated as about 2 mm. On the other hand, the critical crack length for unstable fracture is obtained as about 400 mm. It is therefore concluded that EM forces induced by small leak to terminate plasma will not cause the unstable fracture of VV, and then the inherent safety is demonstrated.

JAEA Reports

Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR, 1; Results up to 20MW operation

Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

JAERI-Tech 2002-024, 46 Pages, 2002/03


no abstracts in English

Journal Articles

Present status of nucleon-meson transport code NMTC/JAERI

Takada, Hiroshi; Meigo, Shinichiro; Niita, Koji*

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, p.949 - 954, 2001/00

no abstracts in English

Journal Articles

Experimental and analytical study on thermal displacement characteristics of cooling system applied to floating support unit

Hanawa, Satoshi; Ishihara, Masahiro; Tachibana, Yukio; Koikegami, Hajime*

Proceedings of 8th International Conference on Nuclear Engineering (ICONE-8) (CD-ROM), p.9 - 0, 2000/00

no abstracts in English

Journal Articles

High energy heavy ion irradiation damage in oxide superconductor EuBa$$_{2}$$Cu$$_{3}$$O$$_{y}$$

Iwase, Akihiro; Ishikawa, Norito; Chimi, Yasuhiro; Wakana, Hironori*; Michikami, Osamu*; Kambara, Tadashi*; *

Nuclear Instruments and Methods in Physics Research B, 146(1-4), p.557 - 564, 1998/00

 Times Cited Count:18 Percentile:77.37(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation

Yoshino, Ryuji; Kondoh, Takashi; Neyatani, Yuzuru; Itami, Kiyoshi; Kawano, Yasunori; Isei, Nobuaki

Plasma Physics and Controlled Fusion, 39(2), p.313 - 332, 1997/02

 Times Cited Count:97 Percentile:93.45(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Amorphization of graphite under ion or electron irradiation

Abe, Hiroaki; Naramoto, Hiroshi; Kinoshita, Chiken*

Mater. Res. Soc. Symp. Proc., Vol. 373, 0, p.383 - 388, 1995/00

no abstracts in English

Journal Articles

Performance of the undulator for JAERI FEL project

Nagai, Ryoji; Kobayashi, Hideki*; Sasaki, Shigemi; Sawamura, Masaru; Sugimoto, Masayoshi; ; Kikuzawa, Nobuhiro; Okubo, Makio; Minehara, Eisuke; *; et al.

Nuclear Instruments and Methods in Physics Research A, 358, p.403 - 406, 1995/00

 Times Cited Count:12 Percentile:74.96(Instruments & Instrumentation)

no abstracts in English

36 (Records 1-20 displayed on this page)