Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 360

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Recent studies on fuel properties and irradiation behaviors of Am/Np-bearing MOX

Hiroka, Shun; Yokoyama, Keisuke; Kato, Masato

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Property studies on Am/Np-bearing MOX were carried out and how the properties influences on the irradiation behaviors was discussed. Both Am and Np inclusions increase the oxygen potential of MOX. Inter-diffusion coefficients obtained by using diffusion couple technique indicate that the inter-diffusion coefficient is larger in the order of U-Am, U-Pu and U-Np. Also, the inter-diffusion coefficients were evaluated to be larger at the O/M = 2 than those of O/M $$<$$ 2 by several orders. The increase of oxygen potential with Am/Np leads to higher vapor pressure of UO$$_{3}$$ and the acceleration of the pore migration along temperature gradient during irradiation. The redistributions of actinide elements were also considered with the relationship of the pore migration and diffusion in solid state. Thus, the obtained inter-diffusion coefficients directly influence on the redistribution rate. The obtained properties were modelled and can be installed in a fuel irradiation simulation code.

JAEA Reports

Annual report of Engineering Services Department on JFY2020

Engineering Services Department

JAEA-Review 2021-054, 85 Pages, 2022/01

JAEA-Review-2021-054.pdf:95.12MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2020. We hope that this report may help to future work.

Journal Articles

An Investigation on the control rod homogenization method for next-generation fast reactor cores

Takino, Kazuo; Sugino, Kazuteru; Oki, Shigeo

Annals of Nuclear Energy, 162, p.108454_1 - 108454_7, 2021/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Stoichiometry between humate unit molecules and metal ions in supramolecular assembly induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ measured by gel electrophoresis techniques

Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*

Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11

Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu$$^{2+}$$ and Tb$$^{3+}$$ complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.

Journal Articles

Coherent eddies transporting passive scalars through the plant canopy revealed by Large-Eddy simulations using the lattice Boltzmann method

Watanabe, Tsutomu*; Takagi, Marie*; Shimoyama, Ko*; Kawashima, Masayuki*; Onodera, Naoyuki; Inagaki, Atsushi*

Boundary-Layer Meteorology, 181(1), p.39 - 71, 2021/10

A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field is described within and above a plant canopy. For a top-down scalar, for which the plant canopy serves as a distributed sink, the flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. By contrast, scalar ejection events are induced by coherent eddies generated near the canopy top. In this paper, the generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy.

JAEA Reports

HTTR burnup characteristic analysis with detailed axial burning region using MVP-BURN

Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*

JAEA-Technology 2021-015, 32 Pages, 2021/09

JAEA-Technology-2021-015.pdf:2.74MB

Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k$$_{rm eff}$$, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for $$^{235}$$U and $$^{239}$$Pu, respectively, and even 30% for the burnable poison $$^{10}$$B. Regarding the division of burning regions to more detail, the change of k$$_{rm eff}$$ is also small of 0.6%$$Delta$$k/k or less. The small burning region gives a detailed distribution of isotopes such as $$^{235}$$U, $$^{239}$$Pu, and $$^{10}$$B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.

JAEA Reports

Annual report of Engineering Services Department on JFY2019

Engineering Services Department

JAEA-Review 2021-011, 86 Pages, 2021/08

JAEA-Review-2021-011.pdf:5.35MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2019. We hope that this report may help to future work.

Journal Articles

Analytical study on removal mechanisms of cesium aerosol from a noble gas bubble rising through liquid sodium pool, 2; Effects of particle size distribution and agglomeration in aerosols

Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi; Atsumi, Takuto*; Uno, Masayoshi*

Proceedings of 28th International Conference on Nuclear Engineering; Nuclear Energy the Future Zero Carbon Power (ICONE 28) (Internet), 6 Pages, 2021/08

In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption considering the effects of particle size distribution and agglomeration in aerosols. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the results for the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were compared with the results of the previous study in which the effects of particle size distribution and agglomeration in aerosols were not considered. From the results, it was concluded that the sensitivities of initial bubble diameter, the aerosol particle diameter and density to the DF became significant due to the inertial deposition of agglomerated aerosols. To validate these analysis results, the simulation experiments have been conducted using a simulant particles of cesium aerosol under the condition of room temperature in water pool and air bubble systems. The experimental results were compared with the analysis results calculated under the same condition.

Journal Articles

Evaluation of internal strain distribution of dissimilar laser welding using high energy X-rays

Shobu, Takahisa; Shiro, Ayumi*; Muramatsu, Toshiharu*

SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 9(5), p.318 - 323, 2021/08

Laser welding has already been put into practical use for various metal materials because the irradiation area is very small and the control is easy. In this study, we evaluated strain, stress, deformation, etc. near the processing affected area by high-energy synchrotron radiation X-ray diffraction method, which is one of the problems of laser welding of different materials that are expected to be put into practical use. As a result of internal deformation measurement of the bonding of dissimilar materials of copper and iron, it was confirmed that the copper side with a high coefficient of linear expansion was hardly deformed, strong tensile strain on the iron side, and a plastic deformation region on the heat-affected zone. In addition, a retained austenite phase, which is thought to be caused by the mixture of copper, was observed in the plastic deformation region of iron, and further problems were clarified in the evaluation of material strength in the mixed metallic materials.

Journal Articles

Visualization of the boron distribution in core material melting and relocation specimen by neutron energy resolving method

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2020-063, 44 Pages, 2021/01

JAEA-Review-2020-063.pdf:2.55MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.

Journal Articles

Derivation of ideal power distribution to minimize the maximum kernel migration rate for nuclear design of pin-in-block type HTGR

Okita, Shoichiro; Fukaya, Yuji; Goto, Minoru

Journal of Nuclear Science and Technology, 58(1), p.9 - 16, 2021/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Suppressing the kernel migration rates, which depend on both the fuel temperature and the fuel temperature gradient, under normal operation condition is quite important from the viewpoint of the fuel integrity for High Temperature Gas-cooled Reactors. The presence of the ideal axial power distribution to minimize the maximum kernel migration rate allows us to improve efficiency of design work. Therefore, we propose a new method based on Lagrange multiplier method in consideration of thermohydraulic design in order to obtain the ideal axial power distribution to minimize the maximum kernel migration rate. For one of the existing conceptual designs performed by JAEA, the maximum kernel migration rate for the power distribution to minimize the maximum kernel migration rate proposed in this study is lower by approximately 10% than that for the power distribution as a conventional design target to minimize the maximum fuel temperature.

Journal Articles

Consideration on modeling of Nb sorption onto clay minerals

Yamaguchi, Tetsuji; Ohira, Saki; Hemmi, Ko; Barr, L.; Shimada, Asako; Maeda, Toshikatsu; Iida, Yoshihisa

Radiochimica Acta, 108(11), p.873 - 877, 2020/11

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

Journal Articles

Simulation analysis of the Compton-to-peak method for quantifying radiocesium deposition quantities

Malins, A.; Ochi, Kotaro; Machida, Masahiko; Sanada, Yukihisa

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.147 - 154, 2020/10

Journal Articles

Development of three-dimensional distribution visualization technology for boron using energy resolved neutron-imaging system (RADEN)

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

JAEA Reports

Annual report of Engineering Services Department on JFY2018

Engineering Services Department

JAEA-Review 2019-044, 96 Pages, 2020/03

JAEA-Review-2019-044.pdf:6.11MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2018. We hope that this report may help to future work.

JAEA Reports

Data acquisition for radionuclide sorption on barrier materials for performance assessment of geological disposal of TRU wastes

Tachi, Yukio; Suyama, Tadahiro*; Mihara, Morihiro

JAEA-Data/Code 2019-021, 101 Pages, 2020/03

JAEA-Data-Code-2019-021.pdf:4.05MB

Sorption of radionuclides in cement and bentonite as engineered barrier materials, and rocks as natural barrier is the one of key processes in the performance assessment of geological disposal of TRU and high-level waste. The magnitude of sorption, expressed normally by a distribution coefficient (K$$_{rm d}$$), needs to be measured and determined taking into account the properties of barrier materials and geochemical conditions and associated uncertainty in the performance assessment. The basic concept for TRU waste disposal contains cementitious materials as an engineered barrier materials, in addition to bentonite and rock. It is therefore needed to consider the effects of the cement degradation and co-existing substances such as nitrates on radionuclide sorption. This report focused on data acquisition of distribution coefficient (K$$_{rm d}$$) by batch sorption experiments for the systems coupling barrier material-chemical condition-radionuclides that are needed to consider for the performance assessment of geological disposal of TRU waste. The barrier materials considered are ordinary Portland cement (OPC), degraded OPC and tuff rock. The chemical conditions are distilled water and synthetic seawater equilibrated with OPC and those containing nitrates and ammonium salts, etc. The radionuclides considered are organic carbon, inorganic carbon, Cl, I, Cs, Ni, Se, Sr, Sn, Nb, Am and Th. Although K$$_{rm d}$$ values have been partly reported previously as RAMDA (Radionuclide Migration Datasets) for the performance assessment in the TRU-2 report, these results and addition K$$_{rm d}$$ data are reported with the details of experimental methods and conditions.

Journal Articles

Characterizing vertical migration of $$^{137}$$Cs in organic layer and mineral soil in Japanese forests; Four-year observation and model analysis

Muto, Kotomi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi*; Koarashi, Jun

Journal of Environmental Radioactivity, 208-209, p.106040_1 - 106040_10, 2019/11

 Times Cited Count:7 Percentile:57.6(Environmental Sciences)

Vertical distributions of $$^{137}$$Cs in the soil profile were observed at five forest sites with different vegetation types for 4.4 years after the Fukushima Dai-ichi Nuclear Power Plant accident, and $$^{137}$$Cs migration in the organic layer and mineral soil was analyzed based on a comparison of models and observations. Cesium-137 migration from the organic layer was faster than that observed in European forests, suggesting that the mobility and bioavailability of $$^{137}$$Cs could be suppressed rapidly in Japanese forests. The diffusion coefficients of $$^{137}$$Cs in the mineral soil were estimated to be 0.042-0.55 cm$$^2$$y$$^{-1}$$, which were roughly comparable with those of European forest soils affected by the Chernobyl Nuclear Power Plant accident. Model predictions indicated $$^{137}$$Cs mainly distributed in the surface mineral soil at 10 years after the accident. It suggest that the $$^{137}$$Cs deposited onto Japanese forest ecosystems will be retained in the surface layers of mineral soil for a long time.

Journal Articles

Applicability of autonomous unmanned helicopter survey of air dose rate in suburban area

Yoshimura, Kazuya; Fujiwara, Kenso; Nakama, Shigeo

Radiation Protection Dosimetry, 184(3-4), p.315 - 318, 2019/10

 Times Cited Count:1 Percentile:23.13(Environmental Sciences)

Journal Articles

Spin and parity determination of the 3.004-MeV level in $$^{27}$$Al; Its low-lying multiplet structure

Shizuma, Toshiyuki*; Omer, M.; Hajima, Ryoichi*; Shimizu, Noritaka*; Utsuno, Yutaka

Physical Review C, 100(1), p.014307_1 - 014307_6, 2019/07

 Times Cited Count:5 Percentile:69.53(Physics, Nuclear)

360 (Records 1-20 displayed on this page)