Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.
Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02
Times Cited Count:1 Percentile:0.03(Construction & Building Technology)Simanullang, I. L.*; Nakagawa, Naoki*; Ho, H. Q.; Nagasumi, Satoru; Ishitsuka, Etsuo; Iigaki, Kazuhiko; Fujimoto, Nozomu*
Annals of Nuclear Energy, 177, p.109314_1 - 109314_8, 2022/11
Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; Iigaki, Kazuhiko
Nuclear Engineering and Design, 396, p.111913_1 - 111913_9, 2022/09
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Kawaguchi, Koichi; Segawa, Tomoomi; Ishii, Katsunori
Funtai Kogakkai-Shi, 59(6), p.283 - 290, 2022/06
In the Japan Atomic Energy Agency, in order to effectively use the out-of-standard pellets in the fuel manufacturing process for high-speed furnaces, we are developing techniques for crushing and reusing them with raw material powder. By analyzing in detail the particle size distribution before and after grinding, it was shown that the grinding powder is composed of three different component particles having different characteristics of the particle size distribution. In addition, we examined the method of predicting pulverized powder particle size distribution from the supply powder particle size distribution.
Hirooka, Shun; Yokoyama, Keisuke; Kato, Masato
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04
Property studies on Am/Np-bearing MOX were carried out and how the properties influences on the irradiation behaviors was discussed. Both Am and Np inclusions increase the oxygen potential of MOX. Inter-diffusion coefficients obtained by using diffusion couple technique indicate that the inter-diffusion coefficient is larger in the order of U-Am, U-Pu and U-Np. Also, the inter-diffusion coefficients were evaluated to be larger at the O/M = 2 than those of O/M 2 by several orders. The increase of oxygen potential with Am/Np leads to higher vapor pressure of UO
and the acceleration of the pore migration along temperature gradient during irradiation. The redistributions of actinide elements were also considered with the relationship of the pore migration and diffusion in solid state. Thus, the obtained inter-diffusion coefficients directly influence on the redistribution rate. The obtained properties were modelled and can be installed in a fuel irradiation simulation code.
Engineering Services Department
JAEA-Review 2021-054, 85 Pages, 2022/01
The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2020. We hope that this report may help to future work.
Takino, Kazuo; Sugino, Kazuteru; Oki, Shigeo
Annals of Nuclear Energy, 162, p.108454_1 - 108454_7, 2021/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*
Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11
Times Cited Count:2 Percentile:24.48(Engineering, Environmental)Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu and Tb
ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu
and Tb
complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.
Watanabe, Tsutomu*; Takagi, Marie*; Shimoyama, Ko*; Kawashima, Masayuki*; Onodera, Naoyuki; Inagaki, Atsushi*
Boundary-Layer Meteorology, 181(1), p.39 - 71, 2021/10
Times Cited Count:4 Percentile:52.56(Meteorology & Atmospheric Sciences)A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field is described within and above a plant canopy. For a top-down scalar, for which the plant canopy serves as a distributed sink, the flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. By contrast, scalar ejection events are induced by coherent eddies generated near the canopy top. In this paper, the generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy.
Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*
JAEA-Technology 2021-015, 32 Pages, 2021/09
Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for
U and
Pu, respectively, and even 30% for the burnable poison
B. Regarding the division of burning regions to more detail, the change of k
is also small of 0.6%
k/k or less. The small burning region gives a detailed distribution of isotopes such as
U,
Pu, and
B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.
Engineering Services Department
JAEA-Review 2021-011, 86 Pages, 2021/08
The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2019. We hope that this report may help to future work.
Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi; Atsumi, Takuto*; Uno, Masayoshi*
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08
In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption considering the effects of particle size distribution and agglomeration in aerosols. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the results for the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were compared with the results of the previous study in which the effects of particle size distribution and agglomeration in aerosols were not considered. From the results, it was concluded that the sensitivities of initial bubble diameter, the aerosol particle diameter and density to the DF became significant due to the inertial deposition of agglomerated aerosols. To validate these analysis results, the simulation experiments have been conducted using a simulant particles of cesium aerosol under the condition of room temperature in water pool and air bubble systems. The experimental results were compared with the analysis results calculated under the same condition.
Shobu, Takahisa; Shiro, Ayumi*; Muramatsu, Toshiharu*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 9(5), p.318 - 323, 2021/08
Laser welding has already been put into practical use for various metal materials because the irradiation area is very small and the control is easy. In this study, we evaluated strain, stress, deformation, etc. near the processing affected area by high-energy synchrotron radiation X-ray diffraction method, which is one of the problems of laser welding of different materials that are expected to be put into practical use. As a result of internal deformation measurement of the bonding of dissimilar materials of copper and iron, it was confirmed that the copper side with a high coefficient of linear expansion was hardly deformed, strong tensile strain on the iron side, and a plastic deformation region on the heat-affected zone. In addition, a retained austenite phase, which is thought to be caused by the mixture of copper, was observed in the plastic deformation region of iron, and further problems were clarified in the evaluation of material strength in the mixed metallic materials.
Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03
Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*
JAEA-Review 2020-063, 44 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.
Okita, Shoichiro; Fukaya, Yuji; Goto, Minoru
Journal of Nuclear Science and Technology, 58(1), p.9 - 16, 2021/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Suppressing the kernel migration rates, which depend on both the fuel temperature and the fuel temperature gradient, under normal operation condition is quite important from the viewpoint of the fuel integrity for High Temperature Gas-cooled Reactors. The presence of the ideal axial power distribution to minimize the maximum kernel migration rate allows us to improve efficiency of design work. Therefore, we propose a new method based on Lagrange multiplier method in consideration of thermohydraulic design in order to obtain the ideal axial power distribution to minimize the maximum kernel migration rate. For one of the existing conceptual designs performed by JAEA, the maximum kernel migration rate for the power distribution to minimize the maximum kernel migration rate proposed in this study is lower by approximately 10% than that for the power distribution as a conventional design target to minimize the maximum fuel temperature.
Yamaguchi, Tetsuji; Ohira, Saki; Hemmi, Ko; Barr, L.; Shimada, Asako; Maeda, Toshikatsu; Iida, Yoshihisa
Radiochimica Acta, 108(11), p.873 - 877, 2020/11
Times Cited Count:6 Percentile:55.75(Chemistry, Inorganic & Nuclear)Malins, A.; Ochi, Kotaro; Machida, Masahiko; Sanada, Yukihisa
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.147 - 154, 2020/10
Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
Engineering Services Department
JAEA-Review 2019-044, 96 Pages, 2020/03
The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2018. We hope that this report may help to future work.