Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Heating, current drive, and advanced plasma control in JFT-2M

Hoshino, Katsumichi; Yamamoto, Takumi; Tamai, Hiroshi; Oasa, Kazumi; Kawashima, Hisato; Miura, Yukitoshi; Ogawa, Toshihide; Shoji, Teruaki*; Shibata, Takatoshi; Kikuchi, Kazuo; et al.

Fusion Science and Technology, 49(2), p.139 - 167, 2006/02

 Times Cited Count:2 Percentile:81.1(Nuclear Science & Technology)

The main results obtained by the various heating and current drive systems, external coil system and divertor bias system are reviewed from the viewpoint of the advanced active control of the tokamak plasma. Also, the features of each system are described. The contribution of the JFT-2M in these areas are summarized.

Journal Articles

Two-dimensional particle simulation of the flow control in SOL and divertor plasmas

Takizuka, Tomonori; Hosokawa, Masanari*; Shimizu, Katsuhiro

Journal of Nuclear Materials, 313-316(1-3), p.1331 - 1334, 2003/03

 Times Cited Count:13 Percentile:32.36

In course of tokamak fusion research, particle and heat control is one of the most crucial issues. Helium ash exhaust and impurity retention in the divertor region owe to the plasma flow towards divertor plate. The localization of heat load on the plate depends on the flow pattern. Accordingly, particle and heat control can be achieved by the proper control of the flow in SOL and divertor plasmas. In this paper, the flow control is studied with two-dimensional particle simulations by PARASOL (PARticle Advanced simulation for SOL and divertor plasmas) code. Magnetic field configuration with separatrix like a tokamak divertor configuration is given. Hot particle source is put in the core plasma. Recycling cold particle source is located near the divertor plate. Particle source of gas puff in the SOL plasma is given for the flow control. Divertor biasing is available by changing the electrostatic potential on the plates. Effects of gas puff and biasing on the flow are studied. Controllability is evaluated from simulation results.

Journal Articles

Thermoelectric instability in externally induced asymmetric divertor plasmas

Hayashi, Nobuhiko; Takizuka, Tomonori; Shimizu, Katsuhiro

Contributions to Plasma Physics, 40(3-4), p.387 - 392, 2000/11

 Times Cited Count:2 Percentile:91.6

no abstracts in English

Journal Articles

Divertor biasing effects to reduce L/H power threshold in the JFT-2M tokamak

Miura, Yukitoshi; *; *; Hoshino, Katsumichi; *; *; Kasai, Satoshi; Kawakami, Tomohide; Kawashima, Hisato; Maeda, M.*; et al.

Fusion Energy 1996, p.167 - 175, 1997/05

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1