Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

An Evaluation on Inelastic Thermal Neutron Scattering Cross-Section Data of Crystalline Graphite

Okita, Shoichiro; Abe, Yutaka*; Tasaki, Seiji*; Fukaya, Yuji

Radioisotopes, 73(3), p.233 - 240, 2024/11

Journal Articles

Molecular dynamics analysis of reactor graphite for preparing thermal neutron scattering law

Okita, Shoichiro; Goto, Minoru

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10

Oral presentation

Problems on ENDF/B-VIII.0 and JEFF-3.3 copper nuclear data above a few MeV

Kwon, Saerom*; Konno, Chikara; Ota, Masayuki*; Sato, Satoshi*

no journal, , 

Our analyses of JAEA/FNS copper benchmark experiment with ENDF/B-VIII.0 and JEFF-3.3 pointed out that the calculation with ENDF/B-VIII.0 underestimated and that with JEFF-3.3 overestimated the measured reaction rate of the $$^{93}$$Nb(n,2n)$$^{rm 92m}$$Nb sensitive to neutrons above 10 MeV. As a result of our detailed study, we specified that this issue was due to the (n,np) and (n,n') reaction data above a few MeV, etc.

Oral presentation

Remarks on iron nuclear data for fusion neutron sources

Kwon, Saerom*; Konno, Chikara; Honda, Shogo*; Sato, Satoshi*; Masuda, Kai*

no journal, , 

We examined the accuracy of the iron data in the latest nuclear data libraries (FENDL-3.2b, JENDL-5, ENDF/B-VIII.0 and JEFF-3.3) used in the fusion neutron source design by using QST/TIARA iron experiment with quasi mono-energy neutrons of 40 and 65 MeV and JAEA/FNS iron experiment with DT neutrons. Then we have found the following issues on FENDL-3.2b iron data and specified that the non-elastic, inelastic scattering, (n,2n) reaction and (n,np) reaction data of $$^{56}$$Fe and inelastic scattering data of $$^{57}$$Fe caused the issues.1) The calculation results with FENDL-3.2b underestimate the measured neutron fluxes of the continuous energy range (10-60 MeV) by a factor of 0.6 in the TIARA experiment with 65 MeV neutrons. 2) The calculation results with FENDL-3.2b tend to underestimate the measured neutron flux above 10 MeV by a factor of 0.8 at depth of 70 cm and overestimate the measured ones below 10 keV by a factor of 1.3 up to depth of 40 cm in the FNS experiment.

4 (Records 1-4 displayed on this page)
  • 1