Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report of Engineering Services Department on JFY2020

Engineering Services Department, Nuclear Science Research Institute

JAEA-Review 2021-054, 85 Pages, 2022/01

JAEA-Review-2021-054.pdf:95.12MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2020. We hope that this report may help to future work.

JAEA Reports

Annual report of Engineering Services Department on JFY2019

Engineering Services Department, Nuclear Science Research Institute

JAEA-Review 2021-011, 86 Pages, 2021/08

JAEA-Review-2021-011.pdf:5.35MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2019. We hope that this report may help to future work.

JAEA Reports

Annual report of Engineering Services Department on JFY2018

Engineering Services Department, Nuclear Science Research Institute

JAEA-Review 2019-044, 96 Pages, 2020/03

JAEA-Review-2019-044.pdf:6.11MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2018. We hope that this report may help to future work.

JAEA Reports

Report of summer holiday practical training 2018; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design

Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.

JAEA-Technology 2019-008, 12 Pages, 2019/07

JAEA-Technology-2019-008.pdf:2.37MB

As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.

Journal Articles

Research and development for gas turbine system in GTHTR300

Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Takizuka, Takakazu; Yan, X.; Kosugiyama, Shinichi

JSME International Journal, Series B, 47(2), p.261 - 267, 2004/05

The GTHTR300 aiming at electric generation with its thermal efficiency of 46 % is a safe and economically competitive HTGR in 2010s. A helium gas turbine system connected with the reactor is designed based on existing technologies developed for fossil gas turbine systems. However, there are some uncertainties in performance of a helium gas compressor, electric magnetic bearings and control system. In order to confirm these technical uncertainties, a 1/3 scale model of the compressor and 1/3 scale magnetic bearings will be manufactured and tested in the simulated condition of the GTHTR300. This paper describes R&D plans focusing on the 1/3 scale compressor model test as well as unique design features of the GTHTR300.

Journal Articles

Generation of radial electric field induced by collisionless internal kink mode with density gradient

Matsumoto, Taro; Tokuda, Shinji; Kishimoto, Yasuaki; Naito, Hiroshi*

Physics of Plasmas, 10(1), p.195 - 203, 2003/01

 Times Cited Count:5 Percentile:16.61(Physics, Fluids & Plasmas)

Effects of density gradient on the collisionless m=1 internal kink mode in a cylindrical tokamak plasma are studied by the gyro-kinetic particle simulations. When the density gradient is not large enough to change the full reconnection process, the phenomena after the full reconnection, such as the secondary reconnection and the evolution of the safety factor profile, are changed considerably due to the self-generated radial electric field, i.e. the m=0 mode. The growing mechanism is explained by the difference of $$Etimes B$$ drift motion between ions and electrons, which is caused by the fast parallel motion of electron. Once the radial electric field is triggered by the symmetrical flow induced by the m=1 mode, the m=0 mode grows up to the same level as the m=1 mode, and drives an $$Etimes B$$ plasma rotation in the ion diamagnetic direction, which breaks the symmetrical plasma flow induced by the m=1 mode. The density and current distributions, and minimum safety factor after the full reconnection, are found to be affected by the asymmetrical flow driven by the m=1 and m=0 modes.

JAEA Reports

Summary of the 4th Workshop on the Reduced-Moderation Water Reactor; March 2, 2001, JAERI, Tokai

Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi

JAERI-Conf 2001-013, 263 Pages, 2001/09

JAERI-Conf-2001-013.pdf:13.37MB

The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The 4th workshop on the RMWRs was held on March 2, 2001 aimed at information exchange between JAERI and other organizations. This report includes the eight original papers presented at the workshop and summaries of the questions and answers for each lecture. Titles of the papers are“Recent Situation of Research on Reduced-Moderation Water Reactor“, “Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors“,“Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR“,“Micro Reactor Physics of MOX Fueled LWR“, “Fast Reactor Cooled by Supercritical Light Water “, “Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System“, “Integral Type Small PWR with Stand-alone Safety“ and “Utilization of Plutonium in Reduced-Moderation Water Reactors“.

JAEA Reports

8 (Records 1-8 displayed on this page)
  • 1